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Abstract

This thesis examines the transverse Ising chain under the influence of the environment
represented by a bosonic bath. In the transverse Ising chain the spins are coupled
to their nearest neighbor perpendicular to a transverse field, a model representing a
chain of qubits with nearest neighbor interaction. This model features a quantum phase
transition from the trivial phase to the topological phase ([1], [2]), and can be mapped
onto the fermionic Kitaev chain via the Jordan-Wigner transformation ([3]) with the
characteristic majorana zero mode (or unpaired majorana fermions) in the topological
phase ([4]), localized at the ends of the chain. Hence there are two degenerate ground
states in the topological regime, which are separated by an energy gap to excitations,
whereas the trivial regime has only one ground state. How these characteristics influ-
ence the decoherence dynamics of the ground state and the zero energy mode (in the
topological regime) is investigated within this thesis. Qubits are affected by dephasing
and energy relaxation, as they are not perfectly isolated to the environment, hence a
realistic model of a chain of qubits is also affected by this kind of dissipation. We focus
on the pure dephasing regime where the qubits are only affected by dephasing, which
we can assume for qubits with energy relaxation time much larger than the decoher-
ence time T1 >> T2 (e.g. Fluxonium qubits with T1 ≈ 1000µs and T2 ≈ 10µs [5]).
We show how the dynamics are influenced by the correlation of the dissipation, for
global correlated dissipation via the total spin of the chain and for locally correlated
dissipation through each spin of the chain. Moreover, the influence of the chain length
on the dynamics is compared for the closed and open chain. At low temperature the
spin chain shows protection against decoherence for the two ground states due to its
topological properties.
The first chapter of this thesis gives a short overview over the most important concepts
and definitions within this thesis, namely the Lindblad equation, topology and dissi-
pation in single and separated qubits. The second chapter is about the properties of
isolated spin chains. The third chapter examines the closed spin chain with dissipation,
whereas the last chapter is about the open spin chain with dissipation.
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German Summary

Diese Arbeit untersucht Quanten-Spin-Ketten unter dem Einfluss der Umgebung. Im
Modell der Quanten-Spin-Kette sind die Spins mit ihrem nächsten Nachbarn senkrecht
zu einem transversalen Feld gekoppelt, welches beispielsweise eine Kette von Qubits mit
Wechselwirkung zum nächsten Nachbarn darstellt. Das Modell beinhaltet einen Quan-
tenphasenübergang von der trivialen Phase in die topologische Phase ([1], [2]) und kann
über die Jordan-Wigner-Transformation auf die fermionische Kitaev-Kette abgebildet
werden ([3]), mit den charakteristischen Majorana Moden (oder ungepaarten Majorana
Fermionen) in der topologischen Phase ([4]), welche an den Enden der Kette lokalisiert
sind. Dabei gibt es in der topologischen Phase zwei entartete Grundzustände, die durch
eine Energielücke zu Anregungen getrennt sind, während die triviale Phase nur einen
Grundzustand hat. Wie diese Eigenschaften die Dekohärenz des Grundzustandes und
der niedrigsten Anregung beeinflussen, wird in dieser Arbeit untersucht.
Im Allgemeinen sind Qubits von Dekohärenz und Energieverlust betroffen, da sie nicht
perfekt gegen die Umgebung isoliert sind. Diese Art der Dissipation muss man auch für
eine realistisches Modell der Quanten-Spin-Kette annehmen. Wir werden das Regime,
bei der die Qubits nur von Dekohärenz betroffen sind, genauer betrachten. Dies ist real-
istisch für Qubits, deren Energierelaxationszeit T1 viel größer ist als die Dekohärenzzeit
T2 (z.B. Fluxonium Qubits mit T1 ≈ 1000µs und T2 ≈ 10µs [5]). Dabei zeigen wir, wie
die Korrelation der Dekohärenz/Fluktuationen zwischen den einzelnen Spins die Dy-
namik der Kette beeinflusst. Zudem wird der Einfluss der Kettenlänge auf die Dynamik
der Quanten-Spin-Kette untersucht. Bei niedrigen Temperaturen zeigt die Spin-Kette
aufgrund ihrer topologischen Eigenschaften einen Schutz gegen Dekohärenz für die bei-
den entarteten Grundzustände.
Das erste Kapitel dieser Arbeit gibt einen kurzen Überblick über die wichtigsten
Konzepte und Definitionen dieser Arbeit, die Lindblad-Gleichung, Topologie und Dis-
sipation in einzelnen und getrennten Qubits. Das zweite Kapitel befasst sich mit den
Eigenschaften isolierter Spin-Ketten. Im dritten Kapitel geht es um den Spin-Ring mit
Dissipation und das letzte Kapitel befasst sich mit der offenen Spin-Kette mit Dissipa-
tion.
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Chapter 1

Introduction

One of the most outstanding challenges in quantum physics is the understanding of in-
teracting quantum many body systems for implementing the properties of such systems
in quantum information and quantum transport. As such quantum systems generally
cannot be described by statistical observables, computational approaches for these sys-
tems are hard to apply for classical computers. Another approach is using controllable
quantum systems to simulate these interacting quantum many body systems ([6]). From
the theoretical point of view general models as the quantum XY model or the quantum
Ising model were studied as a bench test to unveil the characteristics of quantum many
body systems.
The Quantum Ising model with its different variations was already studied 50 years
ago (see [7][8][9][10]) as a universal model for many-body systems and quantum mag-
netism. The model encompasses a quantum phase transition ([1][11]) featuring quan-
tum correlation and entanglement ([12][13]). The model was intensively studied due
to its rich physical properties in the vicinity of the quantum criticality, as quenching
in a driven chain ([14][15][16]) and the Kibble-Zurek mechanism ([2][17]) showing non-
equilibrium dynamics during a sudden change of the Hamiltonians parameters, as well
as the Loschmidt echo of a two level system coupled to the Ising chain ([18]) quantify-
ing the sensitivity of quantum evolution to the criticality.
The Ising model can be also characterized by topology, in which different classes of
Hamiltonians are characterized by a topological quantum number, revealing the re-
lation between topological properties and a quantum phase transition ([19][20]). By
a mapping onto fermionic chains with the Jordan-Wigner transformation ([21]), one
can connect the topology with localized end states corresponding to majorana bound
modes ([4]) in fermionic chains, which obey non-abelian statistics and thus could be
used for fault-tolerant quantum computation ([22]).
Recent progress allows to create artificial quantum chains experimentally, as done with
Rydberg atoms ([23]), trapped ions ([24][25]), optical lattices ([26]) and superconduct-
ing qubits ([27][28][29]). For such artificial chains it is important to understand the dis-
sipation mechanisms, as these chains cannot be considered as isolated systems. Hence
a dissipative model is required to describe these dissipative spin chains.
Numerical methods determined the criticality and phase diagrams of spin chains influ-
enced by single site dissipation along the spin-spin interaction ([30][31][32]), but the
dynamics of the ground state influenced by single site dissipation has yet to be un-
veiled. Since topological states promise robustness against certain classes of dissipation
([33]), there is a relation between topology and dissipative dynamics.
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1.1 Lindblad equation
Consider a general system Hs, which is weakly coupled to the environment HB by HI ,
such that the total Hamiltonian can be expressed as

H = Hs +HI +HB . (1.1.1)

In the interaction picture the time evolution of the density matrix is described by the
von Neumann equation ([34]):

dρ

dt
= −i [HI(t), ρ(t)] , (1.1.2)

which can be represented in the integral form as

ρ(t) = ρ(0)− i
∫ t

0
dt′ [HI(t′), ρ(t′)] . (1.1.3)

Inserting eq.1.1.3 into eq.1.1.2 and taking the trace over the bath, as we are only
interested in the dynamics of the system and not the bath, leads to

dρs(t)
dt

= −
∫ t

0
dt′ trB [HI(t), [HI(t′), ρ(t′)]] , (1.1.4)

with ρs = trB(ρ) the density matrix of the system. For simplicity we assumed that
trB[HI(t), ρ(0)] = 0.
This equation is not closed as the systems density matrix ρs still does depend on the
density matrix of the whole system ρ. To get a closed equation for ρs one can assume
weak coupling between the bath and the system. Hence the bath is only negligibly
affected by the system, such that ρ(t) ≈ ρs(t)⊗ρB, which is called Born approximation

dρs(t)
dt

= −
∫ t

0
dt′ trB [HI(t), [HI(t′), ρs(t′)⊗ ρB]] . (1.1.5)

This equation is not local in time, as the result of ρs(t) depends on all past times ρs(t′).
We can do two further approximation if the typical time scale of the system τs is much
larger than the typical time of the bath τB (rapidly decaying bath correlation). The
first one is that we assume that ρs(t′) = ρs(t), such that the result does only depend
on the present state (no memory effects) to get the time local Redfield equation

dρs(t)
dt

= −
∫ t

0
dt′ trB [HI(t), [HI(t′), ρs(t)⊗ ρB]] . (1.1.6)

For the second approximation one has to substitute t′ with t− t′ and change the upper
limit of the integral to ∞ to finally arrive at the Markovian quantum master equation

dρs(t)
dt

= −
∫ t

0
dt′ trB [HI(t), [HI(t′), ρs(t)⊗ ρB]] . (1.1.7)
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Thus the Markovian master equation can only resolve the dynamics of the system
larger as the typical time scale of the bath τB.
The interaction Hamiltonian between the bath and the system HI can be expressed as

HI =
∑
α

Aα ⊗Bα , (1.1.8)

where Aα are the operators from the system coupled to the operators B̂α from the
bath. One can express these operators in the spectral decomposition

Aα(ω) =
∑

ε′−ε=ω
Π(ε)AαΠ(ε′) , (1.1.9)

where Π(ε) is the projector onto the subspace with energy ε.
Hence the time evolution of an operator Aα(ω) is well defined by

Aα(ω)(t) = e−iωtAα(ω) . (1.1.10)

Using the spectral decomposition of the interaction Hamiltonian in the Markovian
quantum master equation leads to

dρs(t)
dt

=
∑
ω,ω′

∑
α,β

ei(ω
′−ω)tΓαβ(ω)

(
Aβ(ω)ρs(t)A†α(ω′)− A†α(ω′)Aβ(ω)ρs(t)

)
+ h.c. ,

(1.1.11)

with Aα(ω)† = Aα(−ω) and the half Fourier transform of the bath correlator

Γαβ(ω) =
∫ ∞

0
dt′eiωt

′
trB

(
B†α(t)Bβ(t− t′)ρB

)
. (1.1.12)

The fast oscillating terms in eq.1.1.11, for which ω 6= ω′, can be neglected in the
Rotating Wave Approximation (RWA) as they average out on larger time scale

dρs(t)
dt

=
∑
ω

∑
α,β

Γαβ(ω)
(
Aβ(ω)ρs(t)A†α(ω′)− A†α(ω′)Aβ(ω)ρs(t)

)
+ h.c. . (1.1.13)

By defining the real and imaginary part of Γ

καβ(ω) = Γαβ(ω) + Γ∗αβ(ω) =
∫ ∞
−∞

dt′eiωt
′
trB

(
B†α(t′)Bβ(0)ρB

)
(1.1.14)

Sαβ(ω) = 1
2i
(
Γαβ(ω)− Γ∗αβ(ω)

)
, (1.1.15)

one arrives finally at the Lindblad equation

dρs(t)
dt

=
∑
ω

∑
α,β

(
− iSαβ(ω)

[
A†α(ω)Aβ(ω), ρs(t)

]

+ καβ(ω)
(
Aβ(ω)ρs(t)A†α(ω)− 1

2
{
A†α(ω)Aβ(ω), ρs(t)

}))
, (1.1.16)

whereas the first (imaginary) part is the Lamb shift, which only yields a renormalization
of the energy levels of the system due to the interaction with the bath. The second
part describes the dissipative dynamics of the system.
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1.2 Dissipation in a single spin
Consider a single qubit with frequency ωq, the Hamiltonian can be expressed with the
Pauli matrix σz

Hq = ωq
2 σz . (1.2.1)

The qubit has the two eigenstates |e〉 and |g〉, the excited state and the ground state
respectively. Such that σz is

σz = |e〉 〈e| − |g〉 〈g| . (1.2.2)

Any arbitrary state or every change of the qubit can be expressed with a linear combi-
nation of the Pauli matrices σx = |e〉 〈g|+ |g〉 〈e|, σy = −i |e〉 〈g|+ i |g〉 〈e| and σz with
the relation

σiσj = δij1− i
3∑

k=1
εijkσk , (1.2.3)

where εijk is the Levi-Civita symbol and σ1 = σx, σ2 = σy and σ3 = σz.
Thus it is sufficient to use a linear combination of Pauli matrices to describe every
possible coupling of a qubit with the environment. The coupling Hamiltonian reads as

HI =
∑
i

σiB̂i , (1.2.4)

with the time evolution in the interaction picture

HI(t) = σzB̂z(t) + 1
2
(
σ+e

iωqt + σ−e
−iωqt

)
B̂x(t) + i

2
(
σ+e

iωqt − σ−e−iωqt
)
B̂y(t) .

(1.2.5)

Using the Rotating Wave Approximation yields the Lindblad equation

dρs(t)
dt

= κ0 (σzρsσz − ρs) + 1
2κxy(ωq)

(
σ+ρsσ− −

1
2 {σ−σ+, ρs}

)
+ 1

2κxy(−ωq)
(
σ−ρsσ+ −

1
2 {σ+σ−, ρs}

)
, (1.2.6)

with κα(ω) =
∫∞
−∞ dt

′eiωt
′
trB

(
B†α(t′)Bα(0)ρB

)
, 2κxy(ω) = κx(ω) + κy(ω) and

κ0 = lim
ω→0

κz(ω).
Thus the energy relaxation 〈σz〉 (t) is described by

d 〈σz〉
dt

= (κxy(ωq) + κxy(−ωq))
(
〈σz〉 (t)− 〈σz〉eq

)
, (1.2.7)

with 〈σz〉eq = κxy(−ωq)−κxy(ωq)
κxy(ωq)+κxy(−ωq) , such that the energy relaxation rate T1 is

T1 = 1
κxy(ωq) + κxy(−ωq)

. (1.2.8)
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The dephasing dynamics can be described by 〈σx〉 (t)

〈σx〉 (t)
dt

= −
( 1

2T1
+ 2κ0

)
〈σx〉 (t) . (1.2.9)

Hence the decoherence time T2 is defined as

1
T2

= 1
2T1

+ 2κ0 = 1
2T1

+ 1
Tφ

, (1.2.10)

with Tφ = 1
2κ0

the pure dephasing time.
Hence in the limit of T2 << T1 the σz-coupling to the bath is the dominant coupling to
the environment. In experiments the energy relaxation time of qubits is in most cases
larger as the dephasing time T1 > T2 (e.g. [5] and [35]), such that the pure dephasing
(due to σz coupling) of the qubit always plays an important role. In certain qubit
architectures there is even the case that T2 << T1, e.g. for flux and fluxonium qubits
(see [5] and [36]), such that in the pure dephasing regime (in the regime of t ∼ T2) the
σx,y-coupling to the bath can be neglected, as the energy relaxation gets only important
for times, which are magnitudes larger as the dephasing time.

1.3 Pure dephasing rate
The case of a qubit affected by pure dephasing can be determined exactly ([34])

H = ωq
2 σz + σz

∑
k

gk
(
b̂k + b̂†k

)
+
∑
k

ωkb̂
†
kb̂k (1.3.1)

where we assumed a bosonic bath as environment.
Hence the time ordered evolution operator in the interaction picture is

U(t) = T exp
(
−i
∫ t

0
dt′
∑
k

gk
(
b̂ke
−iωkt′ + b̂†ke

iωkt
′))

. (1.3.2)

As the commutator of the interaction term is

[HI(t), HI(t′)] = −2i
∑
k

g2
k sin (ωk(t− t′)) , (1.3.3)

the time ordered expression simplifies to

U(t) = exp
(
−1

2

∫ t

0
dt′
∫ t

0
dt′′[HI(t′), HI(t′′)]θ(t′ − t′′)

)
exp

(
−i
∫ t

0
dt′HI(t′)

)
= exp

(
i
∫ t

0
dt′
∫ t

0
dt′′

∑
k

g2
k sin (ωk(t′ − t′′)) θ(t′ − t′′)

)
V̂ (t) , (1.3.4)

where the first term leads to a time dependent phase factor in the time evolution (no
operators appear here), and the operator V̂ (t) which determines the evolution of our
system

V̂ (t) = exp
(
σz
2
∑
k

(
αk(t)b̂†k − α∗k(t)b̂k

))
, (1.3.5)
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with

αk = 2gk
1− eiωkt
ωk

. (1.3.6)

Thus the density matrix elements of the system can be determined by

〈m| ρs(t) |m̃〉 = 〈m| trB
(
V̂ (t)ρs(0)V̂ −1(t)

)
|m̃〉 (1.3.7)

with m, m̃ = 0, 1 for the two possible states in the qubit.
Inserting eq.1.3.5 into eq.1.3.7 we have

〈0| ρs(t) |0〉 = 〈0| ρs(0) |0〉
〈1| ρs(t) |1〉 = 〈1| ρs(0) |1〉
〈1| ρs(t) |0〉 = 〈0| ρs(t) |1〉∗ = e−Γ0(t) 〈1| ρs(0) |0〉 , (1.3.8)

with the dephasing rate Γ0(t)

Γ0(t) =
∑
k

ln trB
(
exp

[
αk(t)b̂†k − α∗k(t)b̂k

])
= −1

2
∑
k

|αk|2 〈
{
b̂k, b̂

†
k

}
〉
B

= −
∑
k

4g2
k

ω2
k

coth
(

ωk
2kBT

)
(1− cos(ωkt)) . (1.3.9)

In the continuum limit of our bath modes we have

Γ0(t) =
∫ ∞

0
dωK(ω) coth

(
ω

2kBT

) 1− cos(ωt)
ω2 (1.3.10)

with K(ω) the spectral density, which we assume to be ohmic with a cutoff frequency
Ω

K(ω) = ηωe−ω/Ω , (1.3.11)

where η determines the coupling strength to the environment.
Hence the dephasing rate can be determined to (see appendix A)

Γ0(t) = η

2 ln(1 + Ω2t2) + η ln
(

sinh (πkBTt)
πkBTt

)
. (1.3.12)

For short times the decoherence function Γ0(t) does depend on the cutoff frequency Ω,
whereas in the Markovian regime with πkBTt >> 1 we have

Γ0(t) ≈ ηπkBTt = t

Tφ
(1.3.13)

leading to an exponential decay of the coherence with the rate 1
Tφ

= ηπkBT .
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(a) global correlated bath (b) local correlated bath

Figure 1.1: Schematic picture of the two different correlations of the bath (represented
by the oscillators). In a global correlated bath the interaction to the environment is via
the total spin Ŝ = ∑

n σ
z
n and for local correlated bath via the single spin independently.

1.4 Dissipation in a set of N non-interacting spins
The case of non-interacting qubits affected by pure dephasing gives already insight
how dissipation scales with the size of the system. Consider N qubits affected by pure
dephasing

H = ωq
2

N∑
n=1

σzn +
N∑
n=1

∑
k

σznB̂n . (1.4.1)

The Lindblad takes the form

dρs
dt

=
∑
n1,n2

κn1,n2

(
σzn2ρsσ

z
n1 −

1
2{σ

z
n1σ

z
n2 , ρs}

)
, (1.4.2)

with κn1,n2 = lim
ω→0

∫∞
−∞ dt

′eiωt
′
trB

(
B†n1(t′)Bn2(0)ρB

)
.

In general κn1,n2 can be an arbitrary function of the correlation length (distance of n1
to n2). Assuming a global correlation, such that κn1,n2 = κ = 1/(2Tφ) (with Tφ the
dephasing rate of a single qubit) is independent on the spin sites (correlation length of
the bath is much larger as the length of the chain) leads to

dρs
dt

= 1
2Tφ

∑
n1,n2

(
σzn2ρsσ

z
n1 −

1
2{σ

z
n1σ

z
n2 , ρs}

)
. (1.4.3)

For an arbitrary state |{mj}〉 = ∏
j |m〉j, where |m〉j describes the state of the j-th

qubit we have

d 〈{mj}| ρs |{m̃j}〉
dt

= − 1
Tφ

∑
j

mj −
∑
j

m̃j

2

〈{mj}| ρs |{m̃j}〉 . (1.4.4)

The dephasing rate scales quadratically with the differences of excited qubits of the
two arbitrary states, such that there is a decoherence free subspace for states with the
same number of excited qubits. The maximum dephasing rate is N2 times the rate of
the single qubit.
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For local correlation of the dissipation we have κn1,n2 = κδn1,n2 . In this case the Lindblad
reads as

dρs
dt

= 1
2Tφ

∑
n

(σznρsσzn − ρs) , (1.4.5)

hence for states |{mj}〉, where mj describes the state of the jth qubit, we have

d 〈{mj}| ρs |{m̃j}〉
dt

= − 1
Tφ

∑
j

|mj − m̃j| 〈{mj}| ρs |{m̃j}〉 . (1.4.6)

In this locally correlated bath the dephasing time scales linearly with the difference of
each qubit of the two states, such that the decoherence free subspace does not appear
anymore in this case and the maximal dephasing rate is N times the rate of the single
qubit.
As we can see the correlation of the fluctuations in an ensemble of spins can play a
major role in the dissipative dynamics of the whole system.

1.5 Topology
Topology is the study of mathematical objects, which can be classified into different
topological classes. Consider for example a sphere, it can be continuously deformed
into other objects e.g. a disk, such that these objects belong to the same topological
class. As it is not possible to deform a sphere continuously into an object with a hole,
they belong to different topologically classes, which is determined by the number of
holes in this case. Generally such objects and their respective topological classification
by an integer number can be expressed by an integral of local quantities. The Gauss-
Bonnet theorem states that the Gaussian curvature K over a surface S defines an
integer topological invariant, the Euler characteristic ([37])

ξ = 1
2π

∫
S
KdS . (1.5.1)

Topological invariants can be also used to classify Hamiltonians, which may be e.g.

Figure 1.2: (a) Sphere with zero holes and (b) doughnut with one hole, representing
two different topological classes from [37].
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the ground state degeneracy (dimension) of an Hamiltonian.
Continuous transformation of a quantum system can be interpreted as an adiabatic
evolution of an Hamiltonian H(~R) in the parameter space ~R. For such adiabatic slow
evolutions (in comparison to the energy gaps of the system), the system stays in the
slowly changed eigenstate, as the slow evolution does not allow a transition to other
eigenstates of the Hamiltonian. However a phase is accumulated during the adiabatic
evolution of the state |ψn(t)〉

|ψn(t)〉) = eiθn(t)eiγn(t) |n( ~R(t))〉 , (1.5.2)

with |n(~R(t))〉 the eigenstate of the Hamiltonian, the dynamical phase θn and the
geometrical phase γn

θn(t) = −
∫ t

0
En(~R(t′))dt′ (1.5.3)

γn(t) = i
∫ t

0
〈n(~R(t′))| d

dt′
|n(~R(t′))〉 dt′ . (1.5.4)

For a cyclic evolution, the geometric phase becomes the (gauge-invariant) Berry phase
and can be expressed in terms of the cyclic adiabatic evolution ~R (see [38] and [39])

γn(C) =
∮
C
An(~R)d~R =

∫
S
d~S ~Fn, , (1.5.5)

whereas An is the Berry connection

An(~R) = i 〈n(~R| d
d~R
|n(~R)〉 , (1.5.6)

and ~Fn = ~∇~R × An(~R) the Berry curvature. The Berry phase can only take multiple
values of 2π and thus it is reasonable to define a topological invariant number, the
Chern number Cn, which can take only integer values

Cn = 1
2π

∫
S

~Fnd~S , (1.5.7)

and can be used to define different topological classes of Hamiltonians. E.g. for the
Ising models the Chern number can be used to describe the amount of zero modes
([20]), and thus can be also used to identify the quantum phase transition ([19]), which
occurs when the Chern number changes its number.
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Ising chain

The transverse Ising model is a chain of N spins with nearest neighbor interaction with
coupling strength J and a transverse field t to each spin in the chain

H = −t
N∑
i

σzi − J
N−1∑
i

σxi σ
x
i+1 − JN,1σxNσx1 , (2.0.1)

One can distinguish two different chains, the closed chain with closed boundary con-
dition (JN,1 = J), which refer to a ring with N spins and the second case with open
boundary conditions (JN,1 = 0), which refers to a spin chain with two open ends.
This model of the Ising chain can be used for example to describe a chain of N qubits
with nearest neighbor interaction. The chain features a quantum phase transition from
the topological phase t < J (with two degenerate ground states) to the trivial phase
t > J . To unveil the transition and the eigenstates of the spin chain, one can transform
the spin operators to fermionic operators with the Jordan-Wigner transformation (see
[7]).

2.1 Closed Boundary Condition
First consider the spin ring with JN,1 = J . With the spin-flip operator

σ±i = 1
2 (σxi ± iσ

y
i ) (2.1.1)

the Hamiltonian reads

H = −t
N∑
i

σzi − J
N−1∑
i

(
σ+
i + σ−i

) (
σ+
i+1 + σ−i+1

)
− J

(
σ+
N + σ−N

) (
σ+

1 + σ−1
)
. (2.1.2)

2.1.1 Jordan-Wigner transformation
One can introduce fermionic operators with the Jordan-Wigner transformation (see [7]
or [10])

ĉ†n =
n−1∏
m=1

(
ei
π
2 (1−σzm)

)
σ−n = ν̂nσ

−
n (2.1.3)

ĉn = σ+
n

n−1∏
m=1

(
e−i

π
2 (1−σzm)

)
= σ+

n ν̂
†
n . (2.1.4)

16
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These satisfy the fermionic anti commutation relations {ĉm,ĉ†n}=δmn, {ĉm,ĉn}=0 and
{ĉ†m,ĉ†n}=0.
Since [σzn, σ±m] = 0 (for m 6= n) it follows that

ĉ†n =
n−1∏
m=1

(
ei
π
2 (1−σzm)

)
σ−n = σ−n

n−1∏
m=1

(
ei
π
2 (1−σzm)

)
= σ−n ν̂n (2.1.5)

ĉn = σ+
n

n−1∏
m=1

(
e−i

π
2 (1−σzm)

)
=

n−1∏
m=1

(
e−i

π
2 (1−σzm)

)
σ+
n = ν̂†nσ

+
n . (2.1.6)

With ν̂n = ν̂†n (see appendix B.1).
The total Hamiltonian in the fermionic picture reads as (full derivation can be seen in
the appendix B.2)

H = −t
N∑
n=1

(1− 2n̂n)− J
N−1∑
n=1

(
ĉ†nĉn+1 + ĉn+1ĉn + h.c.

)
− P̂

(
ĉ†N ĉ

†
1 + ĉ1ĉN + ĉ†N ĉ1 + ĉ†1ĉN

)
.

(2.1.7)

With the parity operator

P̂ =
N∏
m=1

(1− 2n̂m) , (2.1.8)

which takes the value +1 for an even number of fermionic quasiparticles and −1 for an
odd number of fermionic quasiparticles.
The Hamiltonian has nearly the form of a quadratic fermionic Hamiltonian, only the
parity operator is not quadratic in the fermionic operators. To get rid of the parity
operator one can project the Hamiltonian onto the subspaces of even and odd parity.
To do so one can introduce the projector of the parity operator

P̂± = 1
2

(
1±

N∏
m=1

eiπn̂m
)

= 1
2

(
1±

N∏
m=1

σzm

)
= 1

2

(
1±

N∏
m=1

(1− 2n̂m)
)
, (2.1.9)

such that the Hamiltonian can be expressed as

H =
(
P̂+ + P̂−

)
H
(
P̂+ + P̂−

)
= P̂+HP̂+ + P̂−HP̂− = H+ +H− (2.1.10)

H± = H±k +H±x . (2.1.11)

The term of the transverse field H±k reads

H±k = P̂±(−t)
N∑
n=1

(1− 2n̂n) P̂± , (2.1.12)

and the interaction term Hx is transformed to

H±x = P̂±(−J)
(
N−1∑
n=1

((
ĉ†nĉn+1 + ĉn+1ĉn + h.c.

)
∓
(
ĉ†N ĉ1 + ĉ1ĉN + h.c.

)))
P̂±.

(2.1.13)
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With the convention that the subspace of even parity H+
x must obey the condition

ĉN+1 = −ĉ1 and the subspace of odd parity H−x fulfills the condition ĉN+1 = ĉ1 the full
Hamiltonian can be simplified to

H± = P̂±(−J)
N∑
n=1

(
ĉ†nĉn+1 + ĉn+1ĉn + h.c.

)
− t

(
N∑
n=1

1− 2n̂n
)
P̂±. (2.1.14)

2.1.2 Fourier transformation of the even parity subspace
For the even parity subspace (with even number of fermionic quasiparticles) the con-
dition ĉN+1 = −ĉ1 has to be fulfilled. This condition only allows odd values of k in the
Fourier transformation

ĉn = e−i
π
4

√
N

∑
k+

(
ei
πnk+
N ĉk+

)
, (2.1.15)

where the sum goes over all odd values k+ = ±1,±3, ...,±(N − 3),±(N − 1) (N was
set to an even number for simplification) to fulfill the condition ĉN+1 = −ĉ1.
Therefore the first part of the interaction term can be transformed to

N∑
n=1

(
ĉ†nĉn+1 + h.c.

)
=
∑
k+

ĉ†k+ ĉk+2 cos
(
π

N
k+
)
. (2.1.16)

And the second term of the interaction reads
N∑
n=1

ĉnĉn+1 + h.c. =
∑
k+

sin
(
π

N
k+
) (

ĉk+ ĉ−k+ + ĉ†−k+ ĉ
†
k+

)
. (2.1.17)

The full derivation can be seen in the appendix B.3.
The term of the transverse field transforms to

N∑
n=1

ĉ†nĉn =
∑
k+

ĉ†k+ ĉk+ . (2.1.18)

Hence the even parity subspace Hamiltonian is

H+ = −tN +
∑
k+

[(
2t− 2J cos

(
π

N
k+
))

ĉ†k+ ĉk+ − J sin
(
π

N
k+
) (

ĉk+ ĉ−k+ + ĉ†−k+ ĉ
†
k+

)]
.

(2.1.19)

2.1.3 Fourier transformation of the odd parity subspace
For the odd parity subspace (odd number of quasiparticles) the condition ĉN = ĉ1 has
to be fulfilled, thus only even values of k appear in the Fourier transformation

ĉn = ei
π
4

√
N

∑
k−

(
ei
πnk−
N ĉk−

)
, (2.1.20)
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with the even values k− = 0,±2, ...,±(N − 2),±N .
Therefore the terms can be transformed in the same way as for the even subspace

N∑
n=1

(
ĉ†nĉn+1 + h.c.

)
=
∑
k−

ĉ†k− ĉk−2 cos
(
π

N
k−
)

(2.1.21)

N∑
n=1

(ĉnĉn+1 + h.c.) =
∑
k−

sin
(
π

N
k−
) (

ĉk− ĉ−k− + ĉ†−k− ĉ
†
k−

)
(2.1.22)

N∑
n=1

ĉ†nĉn =
∑
k−

ĉ†k− ĉk− . (2.1.23)

And the odd parity subspace Hamiltonian can be expressed as

H− = −tN +
∑
ke

[(
2t− 2J cos

(
π

N
k−
))

ĉ†k− ĉk− − J sin
(
π

N
k−
) (

ĉk− ĉ−k− + ĉ†−k− ĉ
†
k−

)]
.

(2.1.24)

Note that the difference between the odd parity Hamiltonian H− and the even parity
Hamiltonian H+ are only the different k values.

2.1.4 Bogoliubov transformation
In the following the Hamiltonian H is considered for both subspaces, since the Bogoli-
ubov transformation works for both subspaces the same way. For even k the Hamil-
tonian refers to the odd subspace and for odd k the Hamiltonian refers to the even
subspace.
The two subspace Hamiltonians can be simplified with the following expressions:

ξk = 2
[
t− J cos

(
π

N
k
)]

(2.1.25)

∆k = 2J sin
(
π

N
k
)

(2.1.26)

H = −Nt+
∑
k

(
ξkĉ
†
kĉk + 1

2∆k

(
ĉkĉ−k + ĉ†−kĉ

†
k

))

= −Nt+ 1
2
∑
k

ξk + 1
2
∑
k

(
ĉ†k ĉ−k

)( ξk ∆k

∆k −ξk

)(
ĉk
ĉ†−k

)
(2.1.27)

To diagonalize this Hamiltonian a Bogoliubov transformation, as done in the appendix
B.4, is applied with

ĉk = ukγ̂k + vkγ̂
†
−k (2.1.28)

ĉ†−k = −vkγ̂k + ukγ̂
†
−k , (2.1.29)

whereas u2
k + v2

k = 1, u2
k = 1/2(1 + ξk/Ek) and v2

k = 1/2(1− ξk/Ek). The diagonalized
Hamiltonian with the new quasiparticle operators γ̂k reads

H = −Nt+ 1
2
∑
k

(ξk − Ek) +
∑
k

Ek(γ̂†kγ̂k) , (2.1.30)
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Figure 2.1: Single particle spectrum Ek for different values of t/J with the marked
positions for a spin chain of N = 6 spins referring to the different parity subspaces.
The eigenvalues are degenerate for all states but k = 0 and k = N .

with the excitation energy of the new quasiparticles Ek =
√
ξ2
k + ∆2

k.
This result can be used for the odd and even parity subspace Hamiltonians, only that
for

H− : k = k− = 0,±2, ...,±(N − 2),±N (2.1.31)
H+ : k = k+ = ±1,±3, ...,±(N − 1). (2.1.32)

Thus the full Hamiltonian of the transverse Ising ring reads as

H =
∑
σ=±

[
P̂ σ

(
Eσ

0 +
∑
kσ
Ek(γ̂†kγ̂k)

)
P̂ σ

]
(2.1.33)

E±0 = −Nt+ 1
2
∑
k±

(ξk − Ek) . (2.1.34)

Therefore the single particle spectrum of even parity (H+) is different to the spectrum
of odd parity (H−), which is shown in Fig.2.1 and Fig.2.2.
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Figure 2.2: Single particle spectrum of the spin chain with closed boundary condition
with N = 6 spins. These energy levels refers either to the odd or even parity subspace
of the System. Note that the energy levels are degenerate as discussed in Fig.2.1. One
can see that for an even number of spins the eigenvalues are zero at the critical points
t = J and t = −J .

2.1.5 Ground state
The ground state is the even parity ground state (for J > 0 and t > 0) with

|GS+〉 =
∏
k+

(
uk + vkc

†
kc
†
−k

)
|∅〉 , (2.1.35)

where |∅〉 is the fermionic vacuum.
Thus only even number of excitations are allowed in the even parity subspace, e.g.

P̂+γ†k1+γ
†
k2+P̂

+ |GS+〉 = |k+
1 , k

+
2 〉 (2.1.36)

For the odd parity subspace its more complex, for a clear picture we extract the
fermionic state k = 0 (which energy can get negative) from the Hamiltonian

H− = −2t+ 2(t− J)ĉ†0ĉ0 −
1
2
∑
k− 6=0

Ek +
∑
k− 6=0

Ekγ
†
kγk . (2.1.37)

One can see that the occupation of the fermionic state ĉ†0ĉ0 has positive energy for t > J
and negative energy for t < J , but as it has always the lowest energy in comparison
to other states, it has to be occupied in the lowest state of the odd parity subspace.
Hence the lowest possible state for this subspace can be defined as

|GS−〉 =
∏
k− 6=0

(
uk + vkc

†
kc
†
−k

)
|∅〉 ⊗ ĉ†0 |∅〉 (2.1.38)

= |vacf〉 ⊗ ĉ†0 |∅〉 (2.1.39)
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Here we also have the double Bogoliubov excitation

P̂−γ†k1−γ
†
k2−P̂

− |GS−〉 (2.1.40)

with odd parity. Furthermore, we can also create excitation without ĉ†0ĉ0 occupied e.g.

P̂−γ†k1− ĉk=0P̂
− |GS−〉 = γ†k1−Πk− 6=0

(
uk + vkc

†
kc
†
−k

)
|∅〉 = γ†k1− |vacf〉 (2.1.41)

We can see that the false bogoliubov vacuum |vacf〉 of the odd parity subspace does not
exist alone but is useful to define in terms of excitations. The energy difference between
the lowest state |GS−〉 with odd parity and other excitation, where the occupation at
k = 0 is exchanged, is shown in Fig.2.3.
One can see that in the regime t < J (where the fermionic state k = 0 has negative
energy), we need extra energy to not occupy the fermionic state ĉ†0ĉ0, hence one can
define the Bogoliubov operator as γ†0 = ĉ0 (c0 is a hole excitation). Thus the lowest
state |GS−〉 has the property

γ†0γ0 |GS−〉 = ĉ0ĉ
†
0 |GS−〉 = 0 (2.1.42)

γ†k1γ
†
0 |GS−〉 = |k1, 0〉 (2.1.43)

Thus the state k = 0 is not occupied in the Bogoliubov picture.
This is different in the regime t > J , here we gain energy by not occuping the fermionic
state ĉ†0ĉ0 (and loose by occupying another state as Ek > Ek=0), hence one can define
the Bogoliubov operator as γ0 = ĉ0 (c†0 is a particle excitation) Thus the lowest state
|GS−〉 has the property

γ†0γ0 |GS−〉 = ĉ†0ĉ0 |GS−〉 = |GS−〉 (2.1.44)
γ†kγ

†
0 |GS−〉 = 0 (2.1.45)

Hence the state k = 0 is occupied in the Bogoliubov picture, and we will use the
notation of |GS−(k=0)〉 for t > J to make clear that k = 0 is occupied.
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Figure 2.3: The lowest energy state |GS−〉 of the odd parity subspace in which we
define the false vacuum |vacf〉 (no physical state).
In the regime t < J the state k = 0 has negative energy thus replacing the occupation
at k = 0 with another state needs the energy Ek=0 +Ek. In the regime t > J the state
k = 0 has positive energy thus replacing the occupation at k = 0 with another state
needs the energy Ek − Ek=0.

2.1.6 Ground state energy
The ground state energy with even parity can be determined directly from eq.2.1.34

EGS+ = −Nt+ 1
2
∑
k+

(ξk − Ek) = −1
2
∑
k+

Ek . (2.1.46)

For the odd parity subspace we have

H− = −Nt+ ξ0n̂0 + 1
2
∑
k− 6=0

ξk − Ek +
∑
k− 6=0

Ekγ
†
kγk

= −t+ 2(t− J)n̂0 −
1
2
∑
k− 6=0

Ek +
∑
k− 6=0

Ekγ
†
kγk . (2.1.47)

Here was used that:
1
2
∑
k− 6=0

ξk =
∑
k− 6=0

(
t− J cos

(
π

N
k
))

= (N − 1)t . (2.1.48)

The odd parity subspace always needs at least one particle excitation to fulfill the odd
parity condition. For t, J > 0 the state with the smallest energy is k = 0, with negative
energy for t < J and positive energy for t > J (with the gap closing at t = J).
The state n̂0 occupied corresponds to the lowest odd parity state, hence the energy of
the lowest possible state of the two subspaces can be expressed as

EGS+ = −1
2
∑
k+

Ek (2.1.49)

EGS− = t− J − 1
2
∑
k− 6=0

Ek . (2.1.50)
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The lowest energy states of even and odd parity and their energy difference are plotted
in Fig.2.4 and Fig.2.5, whereas the lowest excitations are plotted in Fig.2.6.

Figure 2.4: Energies of the two lowest states of the two subspaces for N = 6. One can
see that there is a transition from a single ground state for t > J (with even parity) to
two degenerate groundstate for t < J (with different parities).

Figure 2.5: Energy difference E−−E+ of the two lowest states for N = 6 and N = 100
spins. It can be seen that in the thermodynamic limit N → ∞ there is an direct
transition (non analytic point) from a single ground state to two degenerate ground
states at the critical point t = J .
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(a) t < J (b) t > J

Figure 2.6: Energy of lowest possible excitations in respect to the ground state energy
of the even parity subspace for N = 4 spins. Note that the excitations plotted here
always have well defined parity. Besides the next lowest excitation (starting for t = 0 at
8J) are not plotted here. The states with odd parity change their occupation of k = 0
at the critical point (in the Bogoliubov picture), as the hole excitation changes to a
particle excitation at this point (see Fig.2.3).

2.1.7 Topology in the closed chain
To unveil the topological properties one can rewrite the Hamiltonian in the pseudo-spin
form (see [19])

H+ = 4
∑
k>0

~r(k)~sk (2.1.51)

~r(k) = (0, J sin(kπ/N), J cos(kπ/N)− t) , (2.1.52)

which represents pseudo spins {sk} in a magnetic field ~r with

s−k = (s+
k )† = ĉkĉ−k (2.1.53)

szk = 1
2
(
ĉ†kĉk + ĉ†−kĉ−k + 1

)
. (2.1.54)

They satisfy Pauli’s algebra with [szk, s±k′ ] = ±δkk′s±k′ and [s+
k , s

−
k′ ] = 2δkk′szk′ .

In the thermodynamic limit the energy density of the ground state reads

εg = lim
N→∞

Eg/N = − 1
2π

∫ π

−π
|~r(k)|dk . (2.1.55)

The right hand-side looks already like a topological number, as it traces a loop in the
k space (see Fig.2.7), with

x(k) = J sin(kπ/N) , (2.1.56)
y(k) = J cos(kπ/N)− t . (2.1.57)

One can see that the loop for the transverse Ising model is a circle with radius J and
the center shifted by t.
A quantum phase transition now occurs when ∂εg/∂λ has a non-analytic point (with
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Figure 2.7: The loop described by eq.2.1.56 and eq.2.1.57 represented in the xy-space.
The winding number takes the value g = 1 if the origin is inside the circle (t < J) and
the value g = 0 if it is outside of the circle (t > J), showing that the topology changes
at the critical point t = J .

λ = J/t), e.g. the second derivative diverges at this point.
This point can be also determined geometrically by the winding number g in the xy-
space (see [19]) by

g = 1
2π

∮
C

1
r2 (ydx− xdy) , (2.1.58)

which determines the number of clockwise rotations around the origin in our loop
defined in eq.2.1.55. In our simple model we have a circle with radius J and the center
shifted by t. Hence for t > J the circle is shifted from the origin, such that the origin is
outside of the circle leading to g = 0, thus this regime is referred as the trivial regime.
For J > t the origin is within the circle leading to g = 1, thus we are in the topological
regime (see Fig.2.7).
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2.2 Open Boundary condition
For open boundary condition, the chain has two open ends with JN,1 = 0. The Jordan-
Wigner transformation can be used in the same way as for the case of the chain ring.
In this case, the term with the parity operator drops out.

2.2.1 Diagonalization
The Ising chain with open boundary condition after the Jordan Wigner transformation
takes the following form

H = (−J)
N−1∑
n=1

(
ĉ†nĉn+1 + ĉn+1ĉn + h.c.

)
− t

(
N∑
n=1

1− 2n̂n
)

=
∑

i,j

[
tij ĉ
†
i ĉj + 1

2∆ij ĉ
†
i ĉ
†
j + 1

2∆ij ĉj ĉi

]
−Nt

 . (2.2.1)

With the matrices

tij =


−J i = j ± 1
2t i = j

0 else
(2.2.2)

∆ij =


−J i = j − 1
J i = j + 1
0 else

. (2.2.3)

Inserting these matrices into the general equation for the diagonalization of quadratic
fermionic Hamiltonians (see appendix B.5) it follows

Ek ~ψk = 2


t 0 0 ...
−J t 0 0 ...
0 −J t 0 0 ...
... . . . . . . . . . . . . . . .


︸ ︷︷ ︸

A

~φk (2.2.4)

Ek~φk = 2


t −J 0 ...
0 t −J 0 ...
0 0 t −J 0 ...
... . . . . . . . . . . . . . . .


︸ ︷︷ ︸

B

~ψk (2.2.5)

→Ek
2t ψn,k = φn,k − λφn−1,k (2.2.6)

→Ek
2t φn,k = ψn,k − λψn+1,k , (2.2.7)
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as a condition for the transformation for diagonalizing the Hamiltonian with φ0,k = 0
and ψN+1,k = 0.
The diagonal Hamiltonian after the transformation reads

H =
∑
k

Ekγ
†
kγk + EGS , (2.2.8)

whereas

γk =
∑
n

(
un,kân + vn,kâ

†
n

)
(2.2.9)

φn,k = un,k − vn,k (2.2.10)
ψn,k = un,k + vn,k . (2.2.11)

Since eq.2.2.6 and eq.2.2.7 are symmetric in respect to n↔ N + 1− n one can do the
following Ansatz

ψn ∝ sin(k(N + 1− n)) (2.2.12)
φn ∝ sk sin(kn) , (2.2.13)

with sk = sign((sin(k)/ sin(kN)).
From inserting the Ansatz into eq.2.2.6 and eq.2.2.7 one can derive two conditions for
the transformation as done in the appendix B.8

(
E

2t

)2
= 1 + λ2 − 2λ cos(k) (2.2.14)

λ sin(k)
1− λ cos(k) = − tan(k(N + 1)) . (2.2.15)

The first equation shows the energy depending on k (same as for the ring chain), and
the second equation describes the condition for the possible k values (different in the
ring chain). Additionally this equation has also an imaginary solution for specific pa-
rameter regime of λ = J/t (< 1), which leads to a localized solution of ψn and φn at
the ends of the chain.

2.2.2 Localized states
The energy/eigenvalue of the imaginary solution of φn and ψn is

E = 2
√
t2 + J2 + 2tJ cos(iq) = 2

√
t2 + J2 + 2tJ cosh(q) , (2.2.16)

and has to fulfill the condition 2.2.15

− tanh((N + 1)q) = λ sinh(q)
1− λ cosh(q) (2.2.17)

λe−q = 1 + λ
(
eq − e−q

)
e−2q(N+1)

( 1
1− e−2q(N+1)

)
. (2.2.18)
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This can be further simplified by an expansion in the limit of Nq >> 1. To the lowest
order this yields

λe−q = 1 (2.2.19)
q = ln(λ) . (2.2.20)

Thus the energy in lowest order is

E = 2t2
√

1 + λ2 − λ (eq + e−q) (2.2.21)

= 2t2
√

1 + λ2 − λ
(
λ+ 1

λ

)
(2.2.22)

= 0 . (2.2.23)

Hence the state is degenerate with the ground state within the limit of Nq >> 1, which
is valid for t/J << 1 (when we are not close to the critical point t = J).
The first order correction ε of e−q

e−q = 1
λ

+ ε (2.2.24)

(2.2.25)

can be approximated by

ε ≈ λ2 − 1
λ

(1
λ

)2(N+1)
(2.2.26)

→
(
E

2t

)2
≈ ελ(λ2 − 1) (2.2.27)

as derived in the appendix B.9. One can see that the energy correction for the localized
state strongly depends on the number of spins N and λ. For an infinite chain length
the correction drops out, as the ground state is doubly degenerate with the symmetric
and anti-symmetric combination of ψn and φn, see Fig.2.8. If the chain length is finite,
the symmetric and anti-symmetric combinations hybridize into the ground state |GS〉
and the nearly degenerate excitation |0〉 = γ†k0 |GS〉, as φn and ψn have a finite overlap.
The imaginary solution φn and ψn have the (approximated) form (see appendix B.10)
of

ψn = 2
√
λ2 − 1
λN+1 sinh(q(N + 1− n)) ≈

√
λ2 − 1e−qn (2.2.28)

φn = 2
√
λ2 − 1
λN+1 sinh(qn) ≈

√
λ2 − 1e−q(N+1−n) , (2.2.29)

and are plotted for different t/J and N in Fig.2.8, where you can see the overlap scaling
with the number of spins N and the ratio t/J .
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(a) N = 6 t = 0.3J (b) N = 6 t = 0.6J

(c) N = 12 t = 0.3J (d) N = 12 t = 0.6J

Figure 2.8: φn and ψn of the imaginary solution for different number of spins N and
different ratio of t/J . As it can be seen the localization depends on the number of
spins N and on the ratio t/J . The overlap of ψn with φn is proportional to the energy
splitting between the ground state |GS〉 and the lowest excitation |0〉.
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2.2.3 Ground state energy
The ground state energy EGS in the diagonal Hamiltonian

H =
∑
k

Ekγ
†
kγk + EGS (2.2.30)

can be determined by inserting the transformation

γk =
∑
i

(
ukiâi + vkiâ

†
i

)
(2.2.31)

γ†k =
∑
i

(
u∗kiâ

†
i + v∗kiâi

)
(2.2.32)

into the Hamiltonian

H =
∑
k

Ek
∑
i,j

(
u∗kiĉ

†
i + v∗kiĉi

) (
ukj ĉj + vkj ĉ

†
j

)
+ E0

=
∑
k

Ek
∑
i,j

(
u∗kiukj ĉ

†
i ĉj + v∗kivkj ĉiĉ

†
j + u∗kivkj ĉ

†
i ĉ
†
j + v∗kiukj ĉiĉj

)
+ E0

=
(
u∗kiukj ĉ

†
i ĉj + v∗kivkj(δij − ĉ

†
j ĉi) + u∗kivkj ĉ

†
i ĉ
†
j + v∗kiukj ĉiĉj

)
+ E0

=
(
u∗kiukj ĉ

†
i ĉj − v∗kivkj ĉ

†
j ĉi + u∗kivkj ĉ

†
i ĉ
†
j + v∗kiukj ĉiĉj + v∗kivki

)
+ E0

=
∑

i,j

[
tij ĉ
†
i ĉj + 1

2∆ij ĉ
†
i ĉ
†
j + 1

2∆ij ĉj ĉi

]
−Nt

 . (2.2.33)

By comparing the terms without the fermionic ladder operators the ground state energy
can be determined

−Nt = EGS +
∑
k

∑
i

Ek|vki|2

→ EGS = −Nt−
∑
k

∑
i

Ek|vki|2 . (2.2.34)

The ground state energy and the lowest excitation is plotted in Fig.2.9. The whole
single particle spectrum in respect to this ground state energy is plotted in Fig.2.10
and Fig.2.11. Note that for the case of the open chain the single particle spectrum
directly refers to the lowest excitation (since there are no condition for the parity, as
for the closed chain).
As plotted in Fig.2.10 and Fig.2.11 the ground state is (approximately) degenerate
to the lowest excitation for t < J (depending on the chain length N and λ), hence
it is often referred as the topological regime with two degenerate ground states ([20])
separated by an energy gap to excitations.
In the trivial regime t > J has a single ground state separated by an energy gap to
excitations. Thus a quantum phase transition occurs at the critical point t = J (for
N → ∞), where the Chern number changes its value and the zero mode localized at
the end of the chain appears (t < J).
In the following we use the notation of γ†k0 |GS〉 = |0〉 with energy Ek0 = E0 the lowest
excitation (which becomes degenerate with the ground state in the topological regime)
and all higher excitation γ†ki |GS〉 = γ†i |GS〉 = |i〉 with energy Eki = Ei (whereas
i = 1...N − 1 with increasing energy as depicted in Fig.2.10 and Fig.2.11, e.g. the state
|N − 1〉 has always the largest energy EN−1).
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Figure 2.9: Ground state energy of the open Ising chain for N = 6 spins. For t = 0 the
ground state energy starts at −(N − 1)J , since there are N spins with in total N − 1
nearest neighbors (due to the loose ends). For J � t the ground state energy starts to
decrease linearly with t, as the ground state in this regime refers to the case, where all
spins are aligned in z-direction.

Figure 2.10: Single particle energy spectrum for the open chain with N = 6 spins. In a
short chain the overlap of the localized modes leads to a larger energy splitting between
the ground state |GS〉 and the lowest excitation |0〉 in the topological regime (t<J).
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Figure 2.11: Single particle energy spectrum for the open chain with N = 20 spins.
In a longer chain ground state |GS〉 and the lowest exciation |0〉 are (approximately)
degenerate in the topological regime, due to the negligible overlap of the localized
modes.
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Dissipation in the closed Ising chain

The interaction between the environment HB and the spins is via the σz-direction and
relates to the pure dephasing of the single spins, see 1.2. Assuming the dephasing time
of the single spin T2 � T1 is much larger than the energy relaxation time (e.g. for
flux/fluxonium qubits with T1 ≈ 1000µs and T2 ≈ 10µs [5] and [36]), the pure σz
coupling is justified for t� T1.

H = Hs +HB +Hint (3.0.1)

Hs = −t
N∑
i

σzi − J
N−1∑
i

σxi σ
x
i+1 − JσxNσx1 (3.0.2)

Hint =
N∑
i=1

σzi B̂i (3.0.3)

B̂i = operator of the bath (3.0.4)

3.1 Transformation of the interaction for the closed
chain

The coupling of the bath to the spin chain has to be transformed into the eigenoperators
of the Hamiltonian, hence with the Jordan Wigner transformation we have

σzi = 1− 2n̂i . (3.1.1)

Thus the total interaction term of the chain to the bath reads

Hint =
(
P+ + P−

) N∑
i=1

(1− 2n̂i) B̂i

(
P+ + P−

)
. (3.1.2)

As one can see the σz coupling to the bath has to preserve the parity in our system.
Therefore no transitions from the even to the odd parity subspace are induced by
the bath. Hence the interaction Hamiltonian can be transformed for each subspace
separately to

n̂n =


1
N

∑
k1,k2=odd

e−i
π
N

(k1−k2)nĉ†k1ĉk2 in H+

1
N

∑
k1,k2=even

e−i
π
N

(k1−k2)nĉ†k1ĉk2 in H−
. (3.1.3)

34
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With the eigenoperators the coupling term reads as

H±int =
N∑
n=1

1
N

N − 2
∑
k1,k2

e−i
π
N

(k1−k2)n
(
uk1γ

†
k1 + vk1γ−k1

) (
uk2γk2 + vk2γ

†
−k2

) B̂n

=
N∑
n=1

B̂n − 2
N∑
n=1

1
N

∑
k1,k2

e−i
π
N

(k1−k2)n (uk1uk2 − vk1vk2) γ†k1γk2B̂n

+ 2
N∑
n=1

1
N

∑
k1,k2

uk1vk2
(
e−i

π
N

(k1+k2)nγ†k1γ
†
k2 + h.c.

)
B̂n , (3.1.4)

where k is summed over all odd integer in the even subspace and over all even integer
in the odd subspace. In the interaction picture in respect to Hint we can write

dA

dt
= −i[A,Hs] (3.1.5)

[γk, Hs] = Ekγk (3.1.6)
[γ†k, Hs] = −Ekγ†k . (3.1.7)

Thus the time dependent interaction reads in total as

H±int(t) =
N∑
n=1

B̂n(t)− 2
N

N∑
n=1

∑
k1,k2

e−i
π
N

(k1−k2)nei(Ek1−Ek2)t (uk1uk2 − vk1vk2) γ†k1γk2B̂n(t)

+ 2
N

N∑
n=1

∑
k1,k2

uk1vk2
(
e−i

π
N

(k1+k2)nei(Ek1+Ek2)tγ†k1γ
†
k2 + h.c.

)
B̂n(t) , (3.1.8)

with odd or even k1, k2 in H+ and H− respectively. Hereafter we omit the first term of
eq.3.1.8 as it simply corresponds to a renormalization of the bath’s state.

3.2 Master equation
Starting from the Redfield equation we have

dρs
dt

= −
∫ t

t0
dt
′
trB[Hint,I(t), [Hint,I(t

′), ρs(t)⊗ ρB]] (3.2.1)

with the bath correlator

Fn1,n2(t− t′) = trB[Bn1(t)Bn2(t′)ρB] . (3.2.2)



Chapter 3. Dissipation in the closed Ising chain 36

Thus the Redfield can be expressed with the projection on the two subspaces

dρs
dt

= −
∫ t

t0
dt
′ ∑
n1,n2

Fn1,n2(t− t′)
[P̂+σzn1(t)P̂+, P̂+σzn2(t′)P̂+ρs(t)

]

+
[
P̂−σzn1(t)P̂−, P̂−σzn2(t′)P̂−ρs(t)

]
− P̂+σzn2(t′)P̂+ρs(t)P̂−σzn1(t)P̂−

− P̂−σzn2(t′)P̂−ρs(t)P̂+σzn1(t)P̂+


+ Fn2,n1(t′ − t)

[ρs(t)P̂+σzn2(t′)P̂+, P̂+σzn1(t)P̂+
]

+
[
ρs(t)P̂−σzn2(t′)P̂−, P̂−σzn1(t)P̂−

]

− P̂+σzn1(t)P̂+ρs(t)P̂−σzn2(t′)P̂− − P̂−σzn1(t)P̂−ρs(t)P̂+σzn2(t′)P̂+

 , (3.2.3)

such that the Redfield can be splitted up into three parts, the first one which operates
only in the even subspace (terms with only P̂+), the second part only in the odd sub-
space (terms with only P̂−) and the last terms which have projectors of both subspaces.
The derivation for the Lindblad superoperator for the first two terms is the same, only
the sum over k-values are different.

3.3 Global bath coupling
For a global coupling the interaction is independent of the spin site, as the bath interacts
with the total spin of the chain.

Hint =
(∑

i

σzi

)
B̂ = ŜB̂ (3.3.1)

Thus the bath correlator can be simplified to

Fn1,n2(t− t′) = F (t− t′) = trB[B̂(t)B̂(t′)ρB] . (3.3.2)

In the master equation the terms can be simplified (here one part as an example) to

∑
n1,n2

Fn1,n2(t− t′)σzn1(t)σzn2(t′)ρs(t) = F (t− t′)
(∑
n1

σzn1(t)
)(∑

n2

σzn2(t′)
)
ρs(t) .

(3.3.3)
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Thus the equation simplifies as the spin site dependence can be summed out to

∑
n

σzn(t) =
∑
n

(
1− 2

N

∑
k1,k2

e−i
π
N

(k1−k2)nei(Ek1−Ek2)t (uk1uk2 − vk1vk2) γ†k1γk2

+ 2
N

∑
k1,k2

uk1vk2
(
e−i

π
N

(k1+k2)nei(Ek1+Ek2)tγ†k1γ
†
k2 + h.c.

))

= N − 2
∑
k1,k2

δk1,k2e
i(Ek1−Ek2)t (uk1uk2 − vk1vk2) γ†k1γk2

+ 2
∑
k1,k2

δk1,−k2uk1vk2
(
ei(Ek1+Ek2)tγ†k1γ

†
k2 + h.c.

)
= N − 2

∑
k1

(
u2
k1 − v2

k1

)
γ†k1γk1

+ 2
∑
k1

uk1v−k1

(
ei2Ek1tγ†k1γ

†
−k1 + h.c.

)
. (3.3.4)

Here was used that 1/N ∑
k1,k2 e

iπ/N(k1−k2) = δk1,k2, since k1 and k2 are either both even
or both odd, such that the difference is always even (see appendix C.1).
Inserting this into the master equation and using the Rotating Wave Approximation
(where only slow rotating terms are kept, see 1.1) leads to the following Lindblad super
operators (neglecting the Lamb-shift):

L̂±(ρs) = 4κ0
∑
k1,k2

ξk1ξk2

Ek1Ek2

(
P̂±γ†k1γk1P̂

±ρsP̂
±γ†k2γk2P̂

± − 1
2
{
P̂±γ†k1γk1γ

†
k2γk2P̂

±, ρs
})

+
∑
k1,k2

δEk1,Ek2κ(2Ek1)∆k1∆k2

Ek1Ek2

(
P̂±γ−k1γk1P̂

±ρsP̂
±γ†k2γ

†
−k2P̂

± − 1
2
{
P̂±γ†k2γ

†
k2γ−k1γk1P̂

±, ρs
})

+
∑
k1,k2

δEk1,Ek2κ(−2Ek1)∆k1∆k2

Ek1Ek2

(
P̂±γ†k1γ−k1P̂

±ρsP̂
±γ−k2γk2P̂

± − 1
2
{
P̂±γ−k2γk2γ

†
k1γ
†
−k1P̂

±, ρs
})

(3.3.5)

L̂0(ρs) = κ0
∑

k1+,k2−

ξk1ξk2

Ek1Ek2

(
P̂−γ†k2γk2P̂

−ρsP̂
+γ†k1γk1P̂

+ + P̂+γ†k1γk1P̂
+ρsP̂

−γ†k2γk2P̂
−
)

(3.3.6)

With the respective k-values in each subspace.
The derivation can be seen in the appendix C.2. The function κ(ω) is the Fourier
transform of the bath correlator

κ(ω) =
∫ ∞
−∞

dteiωtF (t) (3.3.7)

κ0 = lim
ω→0

∫ ∞
−∞

dteiωtF (t) = 1
2Tφ

(3.3.8)

With Tφ the pure dephasing time of a single spin (see 1.3).
Finally, the full Lindblad master equation takes the form

dρs
dt

= L̂+(ρs) + L̂−(ρs) + L̂0(ρs) . (3.3.9)
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3.3.1 J=0 limit case
To verify the Lindblad master equation, lets have a look on the case of non interacting
spins J = 0. With ∆k = 2J sin(π/Nk) = 0 some of the terms in the Lindblad drop out

dρs
dt

= 2
Tφ

∑
k1,k2

(
γ†k1γk1ρsγ

†
k2γk2 −

1
2
{
γ†k1γk1γ

†
k2γk2, ρs

})

= 2
Tφ

∑
k1,k2

(
n̂k1ρsn̂k2 −

1
2 {n̂k1n̂k2, ρs}

)
. (3.3.10)

Note that here k1 and k2 are summed over all possible integer (of both subspaces) due
to the terms from L̂0(ρs).
For a general matrix element 〈{mj}| ρs |{m̃j}〉, where mj is the occupation of the j-th
site, we have

d 〈{mj}| ρs |m̃j}〉
dt

= 2
Tφ

∑
j

mj

∑
j

m̃j

 〈{mj}| ρs |m̃j}〉

− 1
Tφ

∑
j

m2
j +

∑
j

m̃2
j

 〈{mj}| ρs |m̃j}〉

= − 1
Tφ

∑
j

mj −
∑
j

m̃j

2

〈{mj}| ρs |m̃〉 . (3.3.11)

Hence every subspace with the same number of fermionic occupation is a decoherence
free subspace, whereas the decay of the matrix elements scales quadratically with the
difference of the numbers of excitations ∑jmj and

∑
j m̃j.

3.3.2 Decoherence for t<J
For finite J δEk1,Ek2 can be fulfilled for k1 = −k2 and k1 = k2, due to the degeneracy of
the single particle spectrum. With ∆k = −∆−k the Lindblad operator L̂±(ρs) has the
form

L̂± = 4κ0
∑

k1±,k2±

ξk1ξk2

Ek1Ek2

(
P̂±γ†k1γk1P̂

±ρsP̂
±γ†k2γk2P̂

± − 1
2
{
P̂±γ†k1γk1γ

†
k2γk2P̂

±, ρs
})

+ 2
∑

k1±,k2±
κ(2Ek1)∆2

k1
E2
k1

(
P̂±γ−k1γk1P̂

±ρsP̂
±γ†k1γ

†
−k1P̂

± − 1
2
{
P̂±γ†k1γ

†
k1γ−k1γk1P̂

±, ρs
})

+ 2
∑

k1±,k2±
κ(−2Ek1)∆2

k1
E2
k1

(
P̂±γ†k1γ−k1P̂

±ρsP̂
±γ−k1γk1P̂

± − 1
2
{
P̂±γ−k1γk1γ

†
k1γ
†
−k1P̂

±, ρs
})

.

(3.3.12)
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Thus the off diagonal element between the ground state |GS+〉 (even parity) and the
lowest state of the odd parity subspace |GS−〉 (nearly degenerate to the ground state
for t < J , see 2.1.5) can be expressed as

d 〈GS+| ρs |GS−〉
dt

= −
∑
k1+

∆2
k1

E2
k1
κ(−2Ek1) 〈GS+| γ−k1γk1γ

†
k1γ
†
−k1ρs |GS−〉

−
∑
k1−

∆2
k1

E2
k1
κ(−2Ek1) 〈GS+| ρsγ−k1γk1γ

†
k1γ
†
−k1 |GS−〉

= −
∑
k1+

∆2
k1

E2
k1
κ(−2Ek1) +

∑
k1−

∆2
k1

E2
k1
κ(−2Ek1)

 〈GS+| ρs |GS−〉

= −Γ± 〈GS+| ρs |GS−〉 . (3.3.13)

Hence the coherence between the two lowest states decays exponentially with the rate
Γ± from eq.3.3.13.
With the spectral density K(ω) of the bath coupling, κ(ω) reads as

κ(ω) =

K(ω)(1 + nB(ω)) for ω > 0
K(ω)nB(−ω) for ω < 0

. (3.3.14)

For the ohmic case we have K(ω) = ηω (η determines the coupling strength to the
environment) and the bosonic distribution nB

nB(ω) = 1
e

ω
kBT − 1

. (3.3.15)

For kBT << 2Ek (for every k), nB(Ek) can be approximated with e−2Ek/kBT and leads
to an exponentially suppression of the decoherence rate Γ± at low temperature depicted
in Fig.3.1.
Besides the decoherence rate scales almost linearly with the number of spins N (as the
number of possible excitations the ground states can interact scales with N) as shown
in Fig.3.2.
The rate does mainly depend on the gap energy (increases with decreasing t/J) between
the lowest states and higher excited states, additionally the number of higher excited
states (scales with N), the lowest two states can interact with, influences the total
decoherence rate Γ± in the topological regime.
At higher temperature the influence of the gap energy is reduced as depicted in Fig.3.2.
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Figure 3.1: Γ± (eq.3.3.13) in units of ηJ for N = 20 and different ratio of t/J over the
temperature kBT .
As the gap energy to excitations is the largest for t = 0.1J and smallest for t = 0.9J ,
the exponentially suppression of the decoherence rate starts for t = 0.9J at lower
temperature (at kBT ≈ 0.6J) in comparison to t = 0.1J ( here at kBT ≈ J). When
the temperature is larger than the gap energy, there is a linear dependence of the
decoherence rate on the temperature.

(a) kBT = 0.5J (b) kBT = J

Figure 3.2: Γ± (eq.3.3.13) in units of ηJ for different numbers of spins N and tempera-
ture at kBT = 0.5J over the ratio t/J . The “almost” linear scaling with the number of
spins can be seen in the whole parameter regime of t < J . The rate increases with de-
creasing gap energy (increasing t/J). At larger temperature the influence of the energy
gap is reduced.
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3.3.3 Decoherence for t>J
For this regime the same Lindblad equation as for t < J is valid, but now the lowest
energy state of the odd parity subspace |GS−〉 = |GS−(k=0)〉 corresponds to an excitation
in the chain.
The coherence between the two states (|GS−(k=0)〉 and |GS+〉), which have the energy
difference of Ek=0 in this regime, reads

〈GS+| ρ |GS−(k=0)〉
dt

= −2 ξ
2
0
E2

0
κ0 〈GS+| ρ |GS−(k=0)〉

−

∑
k1+

∆2
k1

E2
k1
κ(−2Ek1) +

∑
k1−

∆2
k1

E2
k1
κ(−2Ek1)

 〈GS+| ρ |GS−(k=0)〉

= − (2κ0 + Γ±) 〈GS+| ρ |GS−(k=0)〉 . (3.3.16)

Here we have additionally to the term Γ± (due to interaction with higher excited states)
also a contribution of the single spin dephasing rate 2κ0 = 1/Tφ.
Hence there will be an increase of 1/Tφ from the topological regime t < J to the trivial
regime t > J , which is independent on the number of spins.
Γ± has the same properties as in the topological regime, as exponential suppression at
low temperatures and scaling with the number of spins N , see Fig.3.3 and Fig.3.4.
For large t/J the decoherence rate tends to the case of non-interacting spins, as Γ±
tends to zero and only the contribution of the single spin dephasing rate remains.

Figure 3.3: Γ± (eq.3.3.16) for different ratio t/J over the temperature for N = 20
spins. The exponential suppression starts for larger energy gaps (increased t/J) at
larger temperature in comparison to smaller t/J with smaller energy gap.
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Figure 3.4: Γ± (eq.3.3.16) for different numbers of spins N at kBT = 0.5J over the
ratio t/J . For large t/J Γ± tends to zero and is increased when the energy gap is small
(close to t = J).

3.3.4 Energy relaxation
In the topological regime (t < J) the relaxation to the two parity ground states

d 〈GS±| ρ |GS±〉
dt

= 2
∑
k±1

∆2
k1

E2
k1
κ(4Ek1) 〈k±1 ,−k1|

±
ρ |k±1 ,−k±1 〉

− 2
∑
k±1

∆2
k1

E2
k1
κ(−4Ek1) 〈GS±| ρ |GS±〉 (3.3.17)

are only connected to specific states |k±,−k±〉 with the same parity.
And for these excited states, we have

d 〈k±,−k±| ρ |k±,−k±〉
dt

= −2∆2
k

E2
k

κ(4Ek) 〈k±,−k±| ρ |k±,−k±〉

+ 2∆2
k

E2
k

κ(−4Ek1) 〈GS±| ρ |GS±〉

+ 2
∑

k±1 6=k,−k

∆2
k1

E2
k1

κ(4Ek1) 〈k±,−k±, k±1 ,−k±1 | ρ |k±,−k±, k±1 ,−k±1 〉

− 2
∑

k±1 6=k,−k

∆2
k1

E2
k1

κ(−4Ek1) 〈k±,−k±| ρ |k±,−k±〉 , (3.3.18)

which are connected to next higher excited states. At low temperature one can do the
assumption that only the first excited states and ground state can be occupied, if not
initially occupied, thus 〈k,−k, k1,−k1| ρ |k,−k, k1,−k1〉 ≈ 0 and
κ(−2Ek) 〈k,−k,| ρ |k,−k〉 ≈ 0 (since κ(−2Ek)) and 〈k,−k,| ρ |k,−k〉 is small at low
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temperature, thus the product is negligible). Hence the Lindblad for the first excited
state simplifies to

d 〈k±,−k±| ρ |k±,−k±〉
dt

= −2∆2
k

E2
k

κ(2Ek) 〈k±,−k±| ρ |k±,−k±〉

+ 2∆2
k

E2
k

κ(−2Ek1) 〈GS±| ρ |GS±〉 . (3.3.19)

At zero temperature the terms with κ(−ω) drop out, such that the relaxation rate rk
of a state |k±,−k±〉 can be directly determined to

rk = 2∆2
k

E2
k

K(2Ek) , (3.3.20)

plotted in Fig3.5. Note that all states |k±, q±〉 with k 6= −q cannot relax into a ground
state with a global bath coupling.
For finite temperature we have coupled differential equations, which leads to different
decay channels for each state, such that the relaxation rates can be determined nu-
merically, see Fig.3.6. One can see that at temperature kBT < J the deviation of the
rate rk at zero temperature is small and the zero temperature rate can be used as an
approximation.
The relaxation of the states tends to zero for increasing t/J , as the spin chain tends to
the case of non-interacting spins, where all diagonal elements do not decay (no energy
relaxation).

(a) t < J (b) t > J

Figure 3.5: Energy relaxation rate rk of a state |k±,−k±〉 at zero temperature. k/N
shows the position for the state |k±,−k±〉 in a spin chain with N spins. The dots are
an example for all states that relax to the groundstate for N = 12 spins. All states
with even parity (and odd k+) relax into |GS+〉 and all states with odd parity (and
even k−) relax into |GS−〉.
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(a) t = 0.4J (b) t = 0.8J

Figure 3.6: Energy relaxation rate rk of the first excited states for (a) t = 0.4J and (b)
t = 0.8J . k/N shows the position for a state |k±,−k±〉 in a spin chain with N spins.
The dots are an example for all states that relax to the groundstate for N = 12 spins.
The deviation of rk at finite temperature are small in comparison to the result at zero
temperature.

3.3.5 Comparison to perturbation theory in the strong cou-
pling regime

Consider the strong coupling regime, where J >> t, such that the transverse field can
be seen as a perturbation Hp of the Hamiltonian

H = −J
∑
i

σxi σ
x
i+1 (3.3.21)

Hp = −t
∑

σzi , (3.3.22)

and the coupling to the environment

HI = B̂
∑
i

σzi +HB . (3.3.23)

Starting from the limit t = 0, the spectrum of the Ising model has a simple form.
There are two ground states (|u〉 and |d〉) with all spins parallel along the x-direction,
whereas the excited subspaces are formed by states corresponding to domain walls
separating regions of parallel spins with different direction.
For instance, the first excited subspace contains only one pair of domains walls, see
Fig.3.7, and has energy 4J in respect to the ground state with dimension (degeneracy)
N(N−1). In the first excited subspace, we characterize the states with two domain walls
as |n,m〉 in which the first index refers to the position of the domain wall between n
and n+ 1 where the spin component (along the x direction) changes from up to down,
whereas the second index refers to the position of the domain wall between m and
m+ 1, where the spin component (along the x direction) changes from down to up, see
Fig. 3.7.
Notice that two states of inverted domain wall positions are different |n,m〉 6= |m,n〉.
For low temperature one can consider only the two ground states and the first excited
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Figure 3.7: Schematic picture of the lowest states for t = 0. The two ground states |u〉
and |d〉 where all spins are aligned the x-direction. And the first excited subspace with
two domain walls |n,m〉 at position n (down to up) and m (up to down).

states.
For small t one has find the real eigenstates Ψ with

εΨ = t
∑
i

σzi Ψ (3.3.24)

Ψ =
∑
n,m

fn,m |n,m〉 . (3.3.25)

The perturbation operator acts as a hopping operator on the states with the two domain
walls: ∑

i

σzi |n,m〉 =
∑

s=−1,+1
|n+ s,m〉+

∑
s=−1,+1

|n,m+ s〉 (3.3.26)

This leads to the following set of equations

t
[
f(n+1,m) + f(n−1,m) + f(n,m+1) + f(n,m−1)

]
= εf(n,m) , (3.3.27)

for |n−m| > 1 and |N + n−m| < 1, whereas for n = m+ 1 we have

t
[
f(n+1,m) + f(n,m−1)

]
= εf(n,m) , (3.3.28)

or for n = m− 1 we have

t
[
f(n−1,m) + f(n,m+1)

]
= εf(n,m) . (3.3.29)

Eq.3.3.28 and eq.3.3.29 are automatically satisfied if we set fn,n = 0.
Thus the problem can be connected to the tight binding model with an effective lattice



Chapter 3. Dissipation in the closed Ising chain 46

Figure 3.8: Effective lattice for (a) N = 4 and (b) N = 5 of the first excited subspace
with the states |n,m〉 (dots) and the connection through the perturbation ∑i σ

z
i (lines)

of these states.

as shown in Fig.3.8. The eigenstates can be expressed with the two new quantum
numbers q = 1, .., N and k = 1, ..., N − 1.

|k, q〉 =
N∑

n,m=1
f(n,m)(k, q) |n,m〉 (3.3.30)

with

fn,m =
[
θ(m− n) + θ(n−m)eiπ()k+q

] √2
N

sin( π
N
k(m− n))ei πN q(m+n) (3.3.31)

ε(k, q) = 2t [cos (π(k − q)/N) + cos (π(k + q)/N)] (3.3.32)

The full derivation can be seen in the appendix C.3. Thus the Lindblad operators can
be directly expressed via the projection on these new eigenstates:

Â(ωi) =
∑
Eα,Eβ

δωi,Eα−Eβ Π̂(Eβ)
∑
i

σzi Π̂(Eα) . (3.3.33)

with the projection operator Π̂.
The projectors on the ground state subspace, with ωi = 0, has zero matrix element
since ∑i σ

z
i can only flip one spin of the lattice. The projectors within the first excited

subspace with the energy spacing |ωi| = ε(k, q)−ε(k′, q′) give only a finite contribution
for ωi = 0 (ε(k, q) = ε(k′, q′)) since the first excited subspace is formed by the eigen-
states of the operator ∑i σ

z
i within this subspace, thus there is no connection between

different excited states of the first excited subspace. Hence we obtain for the Lindblad
operator acting only in one subspace

Â(ωi = 0) = Â0 = Â†0 =
∑
k,q

ε(k, q)
t
|k, q〉 〈k, q| (3.3.34)
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The connection between the ground states with the first excited subspace is charac-
terized by the energy spacing |ωi| = 4J + ε(k, q). Since ∑i σ

z
i can flip one spin only,

the interaction with the bath can create only domain walls of distance one by applying∑
i σ

z
i to one of the two ground state states (Fig. 3.7), i.e. ∑i σ

z
i has only non zero ma-

trix element between the ground states and |n,m〉 with |n−m| = 1, N . In the effective
tight-binding lattice representation (Fig. 3.8), these states are located on the borders
of the effective lattice. The detailed calculation as done in the appendix C.4 shows that
the Lindblad operator only connects excited states with q = N to the ground states.

Â(ωi = Ek) = 2 sin
(
πk

N

)
|gs〉 〈k,N | (3.3.35)

Â(ωi = −Ek) = 2 sin
(
πk

N

)
|k,N〉 〈gs| , (3.3.36)

with Ek = 4J + ε(k,N) and s = eiπ(k+N+1).
The states |g±〉 are a superposition, of the two classical ground states |u〉 and |d〉

|g±〉 = 1√
2

(|u〉 ± |d〉) . (3.3.37)

Thus the the two ground states (even and odd superposition) have defined parity with
the parity operator P̂ defined as

P̂ = eiπ
∑

i
σzi =

∏
n

σ̂zn . (3.3.38)

The total Lindblad for the system restricted on the ground state and the first excited
states takes the form

dtρ =κ(0)
∑

k,q
k′,q′

ε(k, q)ε(k′, q′)
t2

|k, q〉 〈k, q| ρ |k′, q′〉 〈k′, q′| − 1
2
∑
k,q

ε2(k, q)
t2

{|k, q〉 〈k, q| , ρ}



+ 2
∑
k

κ(−Ek) sin2
(
π

N
k
) |k,N〉 〈gk| ρ |gk〉 〈k,N | − 1

2
{
|gk〉 〈gk| , ρ

}
+ 2

∑
k

κ(Ek) sin2
(
π

N
k
) |gk〉 〈k,N | ρ |k,N〉 〈gk| − { |k,N〉 〈k,N | , ρ}


(3.3.39)

Thus the coherence between the two parity ground states reads

d 〈g+| ρs |g−〉
dt

=
∑
k

κ(−Ek) sin2
(
π

N
k
)
, (3.3.40)

which features exponentially suppression for kbT << Ek and linear scaling with the
number of spins.
For the energy relaxation we find at zero temperature for the state |k,N〉 to |g±〉 that
the rate is proportional to rk ∝ sin2(kπ/N). Thus the results shows the same behavior
as for arbitrary t/J in the limit of small t, such that for t/J → 0 the two models
reproduce the same results. Notice that the states |k,N〉 in this model refer to the
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states |k,−k〉 and the ground states |g±〉 in this approach to the two parity ground
states |GS±〉 for arbitrary t/J (in the limit of t/J → 0).

3.3.6 Overview
For a global coupling to the bath the decoherence is determined by the gap energy, as
the interaction of the lowest states are always with excited states gapped by the en-
ergy 2Ek, see Fig.3.9 for the topological regime and Fig.3.10 for the trivial regime. In
the trivial regime there is an additional pure dephasing contribution of the single spin
dephasing rate, as the two state |GS+〉 and |GS−(k=0)〉 belong to different excitational
subspaces, similar as in the case for non interacting spins.
In Fig.3.11 the total decoherence rate of 〈GS+| ρs |GS−〉 = e−Γdect 〈GS+| ρs(0) |GS−〉
is shown, the decoherence rate is strongly suppressed at low temperature in the topo-
logical regime, whereas in the trivial regime the two states are not protected against
dephasing, due to additional pure dephasing in this regime.

Topological regime: t < J

Figure 3.9: Even parity subspace in blue and odd parity subspace in red. In the topo-
logical regime both the ground state and the nearly degenerate lowest state of the odd
parity can interact only with states |k±,−k±〉 (with there respective parity) gapped by
the energy 2Ek. Hence the decoherence rate is fully determined by the gap energy 2Ek
and the number of states the lowest states can interact.
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Trivial regime: t > J

Figure 3.10: Even parity subspace in blue and odd parity subspace in red. In the trivial
regime the ground state can interact only with states |k,−k〉 (with the respective par-
ity) gapped by the energy 2Ek. The lowest state of the odd parity subspace |GS−(k=0)〉
can only interact with states |k−,−k−, 0〉 gapped by the energy 2Ek. Hence that de-
coherence rate is fully determined by the gap energy 2Ek and the numbers of higher
excited states (scales with N) and the pure dephasing contribution in the trivial regime,
see Fig.3.11.

Figure 3.11: Decay rate Γdec = θ(t−J)
Tφ

+ Γ± of the coherence between the two lowest
states |GS+〉 and |GS−〉 normalized with the single spin dephasing rate 1

Tφ
= ηπkBT

(see 1.3) for N = 40 spins. At low temperature the dephasing rate can be strongly
suppressed in the topological regime.
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3.4 Local bath coupling
For local coupling to the environment every spin is coupled to a local bath, which is
independent of the bathes coupled to other spins, such that the bath correlator is only
nonzero for correlators from the same spin sites

Fn1,n2(t− t′) = δn1,n2F (t− t′) . (3.4.1)

Hence the terms in the master equation have the following form (here one part as an
example):∑

n1,n2

Fn1,n2(t− t′)σzn1(t)σzn2(t′)ρs(t) = F (t− t′)
∑
n1

σzn1(t)σzn1(t′)ρs(t) . (3.4.2)

The full derivation of all terms in the Lindblad equation can be seen in the appendix C.5
leading to the following Lindblad super operators (neglecting the Lamb shift terms):

L̂±(ρs) = 4
N

∑
k1±,k2±,k3±,k4±

(uk1uk2 − vk1vk2)(uk3uk4 − vk3vk4)δk1−k2,k4−k3δEk1−Ek2,Ek4−Ek3κ(Ek1 − Ek2)
(
P̂±γ†k3γk4P̂

±ρsP̂
±γ†k1γk2P̂

± − 1
2{P̂

±γ†k1γk2γ
†
k3γk4P̂

±, ρs}
)

+ 4
N

∑
k1±,k2±,k3±,k4±

uk1vk2uk3vk4δk1+k2,k4+k3δEk1+Ek2,Ek4+Ek3κ(Ek1 + Ek2)
(
P̂±γk4γk3P̂

±ρsP̂
±γ†k1γ

†
k2P̂

± − 1
2{P̂

±γ†k1γ
†
k2γk4γk3P̂

±, ρs}
)

+ 4
N

∑
k1±,k2±,k3±,k4±

uk1vk2uk3vk4δk1+k2,k4+k3δEk1+Ek2,Ek4+Ek3κ(−Ek1 − Ek2)
(
P̂±γ†k3γ

†
k4P̂

±ρsP̂
±γk2γk1P̂

± − 1
2{P̂

±γk2γk1γ
†
k3γ
†
k4P̂

±, ρs}
)
(3.4.3)

and from the terms mixing the parity, we have

L̂±∓(ρs) = 4
N

∑
k1∓,k2∓,k3±,k4±

(uk1uk2 − vk1vk2)(uk3uk4 − vk3vk4)δk1−k2,k4−k3δEk1−Ek2,Ek4−Ek3

κ(Ek1 − Ek2)
(
P̂±γ†k3γk4P̂

±ρsP̂
∓γ†k1γk2P̂

∓
)

+ 4
N

∑
k1∓,k2∓,k3±,k4±

uk1vk2uk3vk4δk1+k2,k4+k3δEk1+Ek2,Ek4+Ek3

κ(Ek1 + Ek2)
(
P̂±γk4γk3P̂

±ρsP̂
∓γ†k1γ

†
k2P̂

∓
)

+ 4
N

∑
k1∓,k2∓,k3±,k4±

uk1vk2uk3vk4δk1+k2,k4+k3δEk1+Ek2,Ek4+Ek3

κ(−Ek1 − Ek2)
(
P̂±γ†k3γ

†
k4P̂

±ρsP̂
∓γk2γk1P̂

∓
)
. (3.4.4)
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Resulting in the full Lindblad master equation

dρs
dt

= L̂+(ρs) + L̂−(ρs) + L̂−+(ρs) + L̂+−(ρs) . (3.4.5)

Note that this is the most general Lindblad equation for arbitrary t/J and N , the δ-
functions have to determined in principle for every configuration of those parameters.

3.4.1 J=0 limit case
For J = 0 all excitations have the same energy Ek = 2t, thus the δ-functions for the
energy are always fulfilled. As v2

k = 1/2(1 − ξk/Ek) = 0 and u2
k = 1 many terms drop

out in the master equation

dρs
dt

= 2
Tφ

∑
k1,k2,k3,k4

δk1−k2,k4−k3

(γ†k3γk4ρsγ
†
k1γk2 −

1
2{γ

†
k1γk2γ

†
k3γk4, ρs}

) . (3.4.6)

Notice that the sum is now over all possible k (of the even and odd subspace), due to
the terms of L̂+− and L̂−+.
All diagonal elements e.g. 〈k| ρs |k〉 with |k〉 = γ†k |GS+〉 do not decay:

d 〈k| ρs |k〉
dt

= 2
NTφ

∑
k1

〈k| γ†kγk1ρsγ
†
k1γk |k〉

− 1
NTφ

∑
k1

〈k| {γ†kγk1γ
†
k1γk, ρs} |k〉 = 0 (3.4.7)

Besides the subspace with same number of excitations is not a decoherence free sub-
space anymore (as for the global bath with J = 0)

d 〈k| ρs |q〉
dt

= − 1
NTφ

∑
k1

〈k| γ†kγk1γ
†
k1γkρs |q〉

− 1
NTφ

∑
k1

〈k| ρsγ†qγk1γ
†
k1γq |q〉

= − 2
Tφ
〈k| ρs |q〉 . (3.4.8)

And for the coherence between a fully excited state |k1, .., kN〉 = |{k}〉 and the ground
state we have

d 〈GS+| ρs |{k}〉
dt

= − 1
NTφ

κ0
∑
k1k2

〈k| ρsγ†k2γk2γ
†
k1γk1 |{k}〉

= −N
Tφ
〈GS| ρs |{k}〉 . (3.4.9)

One can see that it scales linearly with the difference in the excitations, such that for
arbitrary states |a〉 and |b〉 we have

d 〈a| ρs |b〉
dt

= − 1
Tφ

∑
k∈(a∪b)\(a∩b)

〈a| ρs |b〉 (3.4.10)
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a contribution of the single spin dephasing rate for each excitation (not excitation
number as for the global case), which is only in one of these two arbitrary states.

3.4.2 Approximation: no accidental degeneracy
For finite J we have terms with

δk1−k2,k4−k3δEk1−Ek2,Ek4−Ek3 , (3.4.11)

these terms are always fulfilled (for arbitrary t/J and N) for k1 = k2 and k3 = k4 or
for k1 = k4 and k2 = k3. But additional to these general solution there can be also
solutions, which are valid for a special configuration of t/J and N . In the following
we will focus only on these general solutions, which are valid for the whole parameter
regime.
This means the derived result can differ a bit for special configurations of t/J and
N , which have such a special solution (as here an additional term will appear in the
Lindblad). But as it can be seen for N = 10 qubits in the appendix C.6, these additional
solutions rarely happens (at least for an intermediate amount of qubits) and also have
low influence on the result (N2 general solution for the delta-functions with the same
scaling prefactor).
For N → ∞ these additional terms will of course happen more often (for more ratios
of t/J), but also the influence of these terms should be small (due to the quadratically
increasing amount of other terms).
In similar way, the relation

δk1+k2,k4+k3δEk1+Ek2,Ek4+Ek3 (3.4.12)

is generally fulfilled for the cases k1 = k3 and k2 = k4 or k2 = k3 and k1 = k4.
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3.4.3 Decoherence for t<J
Using this approximation for the Lindblad operators we have

L̂±(ρs) = 4
N

∑
k1±,k2±

ξk1ξk2

Ek1Ek2

κ0

(
P̂±γ†k2γk2P̂

±ρsP̂
±γ†k1γk1P̂

± − 1
2{P̂

±γ†k1γk1γ
†
k2γk2P̂

±, ρs}
)

+ 2
N

∑
k1± 6=k2±

Ek1Ek2 + ξk1ξk2 −∆k1∆k2

Ek1Ek2κ(Ek1 − Ek2)
(
P̂±γ†k2γk1P̂

±ρsP̂
±γ†k1γk2P̂

± − 1
2{P̂

±γ†k1γk2γ
†
k2γk1P̂

±, ρs}
)

+ 1
N

∑
k1±,k2±

Ek1Ek2 + ξk1Ek2 − ξk2Ek1 − ξk1ξk2 −∆k1∆k2

Ek1Ek2κ(Ek1 + Ek2)
(
P̂±γk2γk1P̂

±ρsP̂
±γ†k1γ

†
k2P̂

± − 1
2{P̂

±γ†k1γ
†
k2γk2γk1P̂

±, ρs}
)

+ 1
N

∑
k1±,k2±

Ek1Ek2 + ξk1Ek2 − ξk2Ek1 − ξk1ξk2 −∆k1∆k2

Ek1Ek2κ(−Ek1 − Ek2)
(
P̂±γ†k1γ

†
k2P̂

±ρsP̂
±γk2γk1P̂

± − 1
2{P̂

±γk2γk1γ
†
k1γ
†
k2P̂

±, ρs}
) ,

(3.4.13)

and from the mixing parity terms from the master equation, we have

L̂±∓(ρs) = 4
N

∑
k1∓,k2±

ξk1ξk2

Ek1Ek2
κ0
(
P̂±γ†k2γk2P̂

±ρsP̂
∓γ†k1γk1P̂

∓
)
. (3.4.14)

Thus the off diagonal element between the two lowest states reads as

d 〈GS+| ρs |GS−〉
dt

= −
(

1
2N

∑
k1+ 6=k2+

κ(−Ek1 − Ek2)Ek1Ek2 − ξk1ξk2 −∆k1∆k2

Ek1Ek2

+ 1
2N

∑
k1− 6=k2−

κ(−Ek1 − Ek2)Ek1Ek2 − ξk1ξk2 −∆k1∆k2

Ek1Ek2

)
〈GS+| ρs |GS−〉

= −Γ(l)
± 〈GS+| ρs |GS−〉 . (3.4.15)

Hence the coherence between the two parity ground states decay exponentially with
the decoherence rate Γ(l)

± .
One can see that for kBT < Ek1 +Ek2 the decoherence rate is exponentially suppressed,
due to the reduced interaction with higher excited states as depicted in Fig.3.12(a).
There is “almost” linear scaling with the number of spins N for t < J . Besides near
the critical point the rate is increased, as the gap energy to excited states is smaller
near t = J , leading to an increased interaction with excited states (see Fig.3.12(b)).
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(a) N = 10 (b) kBT = 0.5J

Figure 3.12: Decoherence rate Γ(l)
± (eq.3.4.15) over temperature (a) for N = 10 spins

and Γ(l)
± over t/J (b) at kBT = 0.5J . In (a) one can see exponentially suppressed

behavior for temperatures lower than the gap. The suppression starts for larger gaps
(t/J = 0.1) much earlier as for smaller gaps (e.g t/J = 0.9). In (b) one can see “almost”
linear scaling of Γ(l)

± with the number of the spins N in the whole regime.

3.4.4 Decoherence for t>J
In this regime the lowest state in the odd parity subspace |GS−(k=0)〉 has the property
γ†0γ0 |GS−(k=0)〉 = |GS−(k=0)〉. The off diagonal element between the two lowest states
reads

d 〈GS+| ρs |GS−(k=0)〉
dt

= −
(

1
2N

∑
k1+ 6=k2+

κ(−Ek1 − Ek2)Ek1Ek2 − ξk1ξk2 −∆k1∆k2

Ek1Ek2

+ 1
2N

∑
k1− 6=k2−

κ(−Ek1 − Ek2)Ek1Ek2 − ξk1ξk2 −∆k1∆k2

Ek1Ek2

+ 2
N
κ0 + 2

N

∑
k1− 6=0

κ(Ek=0 − Ek1)Ek=0Ek1 + ξk=0ξk1 −∆k=0∆k1

Ek1Ek=0︸ ︷︷ ︸
Γl

)

〈GS+| ρs |GS−(k=0)〉

= −
(

Γ(l)
± + 2κ0

N
+ Γl

)
〈GS+| ρs |GS−(k=0)〉 . (3.4.16)

Here we have again the contribution Γ(l)
± , due to the interaction to higher excited states

(e.g |GS+〉 with |k+
1 , k

+
2 〉 or |GS−(k=0)〉 with |k

−
1 , k

−
2 , 0〉) gapped by the energy Ek1 +Ek2.

Γ(l)
± has the same properties as for t < J , as exponential suppression at low temperature

and the scaling with N .
Hence there is an increase in the decoherence rate between the two lowest state in the
trivial regime by 2κ0

N
+ Γl.

The pure dephasing contribution 2κ0
N

(because |GS+〉 and |GS−(k=0)〉 belong to different
excitational subspaces in the trivial regime) vanishes for larger N , and plays only a
role when the number of spins is not too large (as it scales with 1/N).
The last term Γl is due to the interaction of the state |GS−(k=0)〉 with states as
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(a) Γ(l)
± for N = 10 (b) Γ(l)

± for N = 50

(c) Γl for N = 10 (d) Γl for N = 50

Figure 3.13: Γ(l)
± (eq.3.4.16) plotted over temperature for N = 10 (a) and N = 50

(b) spins, and Γl (eq.3.4.16) plotted over temperature for N = 10 (c) and N = 50 (d)
spins. Γ(l)

± shows exponential suppression at temperature lower than the gap energy and
besides “almost” linear scaling with N . Γl is increasing already at lower temperature.
For larger N the rate Γl is increasing at lower temperature.

γ†
k−1
γk=0 |GS−(k=0)〉 = |k−1 〉, which have only slightly higher energy Ek1 − Ek=0. Thus

Γl breaks the exponential suppression at temperature lower than the gap energy (of
∼ 2Ek).
In Fig.3.13 one can see that Γl leads to an increased decoherence rate at very low tem-
perature. With increasing N the energy difference of |GS−(k=0)〉 to the next higher state
|k = ±2〉 decreases, such that Γl increases even at lower temperature (in comparison
to smaller N).
In Fig.3.14 (Γ(l)

± +Γl) are plotted over the ratio t/J . Γ(l)
± contributes only close to t = J

when the energy gap is small. In contrast, Γl contributes also at larger t/J , as the en-
ergy difference between |GS−(k=0)〉 and |k1〉 does not increase with t/J (it even is slightly
reduced for increasing t/J). This causes the non-monotonic behavior in Fig.3.14.
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(a) kBT = 0.2J (b) kBT = 0.5J

(c) kBT = J

Figure 3.14: Γ(l)
± +Γl (eq.3.4.16) for different numbers of spins N and temperature at (a)

kBT = 0.2J , (b) kBT = 0.5J and (c) kBT = J over the ratio t/J . At all temperature
the rate is increased near t = J , as the reduced gap energy leads to an increase in Γ(l)

± .
Besides at kBT = 0.2J the rate increases for increasing t/J , since the energy difference
of |GS−〉 to |k1〉 decreases leading to a bigger contribution of Γs to the rate. For t >> J
the rate tends to a constant value depending on temperature and N .
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3.4.5 Energy relaxation
For a local bath the excited states also interact with each other, and each state does
relax to the ground state. In the topological regime (t < J) we have for both subspaces

d 〈GS±| ρ |GS±〉
dt

= 1
N

∑
k1±,k2±

Ek1Ek2 − ξk1ξk2 −∆k1∆k2

Ek1Ek2
κ(Ek1 + Ek2) 〈k±1 , k±2 | ρ |k±1 , k±2 〉

− 1
N

∑
k1±,k2±

Ek1Ek2 − ξk1ξk2 −∆k1∆k2

Ek1Ek2
κ(−Ek1 − Ek2)) 〈GS±| ρ |GS±〉 .

(3.4.17)

And for the excited state for low temperatures kBT < 2Ek, such that the interaction
with higher excited states |k1, k2, k3, k4〉 can be neglected:

d 〈k±1 , k±2 | ρ |k±1 , k±2 〉
dt

= 2
N

∑
k36=k2

Ek3Ek1 + ξk3ξk1 −∆k1∆k3

Ek1Ek3

κ(Ek3 − Ek1) 〈k±3 , k±2 | ρ |k±3 , k±2 〉

+ 2
N

∑
k36=k1

Ek3Ek2 + ξk3ξk2 −∆k2∆k3

Ek2Ek3

κ(Ek3 − Ek2) 〈k±3 , k±1 | ρ |k±3 , k±1 〉

− 2
N

∑
k3

Ek3Ek1 + ξk3ξk1 −∆k1∆k3

Ek1Ek3

κ(−Ek3 + Ek1))

+
∑
k3

Ek3Ek2 + ξk3ξk2 −∆k2∆k3

Ek2Ek3

κ(−Ek3 + Ek2)

+ κ(Ek1 + Ek2)Ek1Ek2 − ξk1ξk2 −∆k1∆k2

Ek1Ek2

 〈k±1 , k±2 | ρ |k±1 , k±2 〉
+ 2
N
κ(Ek1 − Ek2)Ek1Ek2 − ξk1ξk2 −∆k1∆k2

Ek1Ek2
〈GS±| ρ |GS±〉 .

(3.4.18)

The first four terms are due to the interaction with other excited states (with same
parity) and the last two terms due to the interaction with the ground state.
The numerical determined relaxation rate rk1,k2 of a doubly excited state |k±1 , k±2 〉 to
the ground state with respective parity is plotted in Fig.3.15 and Fig.3.16.
For t/J > 0.5 the relaxation rate is determined by the excitation energy of the state,
such that higher excited states have a larger relaxation rate, as they have more possible
relaxation channels by decaying into lower excited states.
For t/J < 0.5 the relaxation via lower energetic states is reduced and states in the
middle of the excitational band have a faster direct decay channel to the ground state
(similar as for the global bath, where states |k±,−k±〉 with k/N ∼ 0.5 have larger
relaxation rates).
At larger temperature everything is washed out, due to the finite temperature allowing
also decay via higher energetic states, see Fig.3.16.
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(a) t = 0.1J (b) t = 0.5J

(c) t = 0.9J (d) t = 2J

Figure 3.15: Relaxation rate of a state |k1, k2〉 for N = 30 spins. For larger t (e.g.
t = 0.9J) the relaxation rate does mostly depend on the energy of the states, such that
high energy states with large |k| does relax faster as low energy states with small k
(leading to the circle around the center). In contrary to the regime with small t, where
the circle is squeezed, such that all state with lying in the middle of the excitation
band have larger relaxation rates.

(a) t = 0.1J (b) t = 2J

Figure 3.16: Relaxation rate of a state |k1, k2〉 at kBT = J for N = 30 spins. It has still
the same shape as for zero temperature, but is washed out now at finite temperature.
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In the trivial regime the lowest excitations in the odd parity subspace are
γk−1
|GS−(k=0)〉 = |k−1 〉. With κ(Ek − E0) >> κ(−Ek1 − Ek2) in the low temperature

limit, we will focus on the interaction with the lowest excitations only

d 〈GS−(k=0)| ρs |GS
−
(k=0)〉

dt
= 2
N

∑
k1− 6=0

Ek1Ek + ξk1ξk −∆k1∆k

Ek1Ek
κ(Ek1 − Ek) 〈k−1 | ρs |k−1 〉

− 2
N

∑
k1− 6=0

Ek1Ek=0 + ξk1ξk=0 −∆k1∆k=0

Ek1Ek=0
κ(Ek=0 − Ek1)

〈GS−(k=0)| ρs |GS
−
(k=0)〉 . (3.4.19)

d 〈k−| ρs |k−〉
dt

= 2
N

∑
k1− 6=k,0

Ek1Ek + ξk1ξk −∆k1∆k

Ek1Ek
κ(Ek1 − Ek) 〈k−1 | ρs |k−1 〉

− 2
N

∑
k1− 6=k−

Ek1Ek + ξk1ξk −∆k1∆k

Ek1Ek
κ(Ek − Ek1) 〈k−| ρs |k−〉

+ 2
N

Ek=0Ek + ξk=0ξk −∆k=0∆k

Ek=0Ek
κ(Ek=0 − Ek) 〈GS−(k=0)| ρs |GS

−
(k=0)〉 .

(3.4.20)

Fig.3.17 depicts the numerical determined relaxation rate rk of singly excited states
|k−〉 to |GS−(k=0)〉. The relaxation rate is fully determined by the excitation energy, as
the higher excited states are also able to relax via lower energetic states.

(a) kBT = 0 (b) kBT = J

Figure 3.17: Relaxation rate of the odd parity subspace of a state |k−〉 for different
number of spins at t/J = 2. The relaxation rate does not depend on N , higher energetic
states do relax faster as states with low energy, as higher energy states can relax
into more other lower lying states leading to an increased relaxation rate. At higher
temperature the rates are increased.
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3.4.6 Overview
For local coupling to the environment the decoherence is determined by the gap en-
ergy in the topological regime, as the interaction of the lowest states are always with
states that are gapped with the gap energy Egap ∼ 2Ek, see Fig.3.18. For the triv-
ial regime there is additionally to the interaction with the gapped states, also the
interaction of |GS−(k=0)〉 with states γ†k1−γk=0 |GS−(k=0)〉 = |k−1 〉 with energy difference
Ek1 − Ek=0 << Egap smaller than the gap energy.
Hence we only have exponential suppression of the decoherence rate at kBT << Egap
in the topological regime, as the additional interaction in the trivial regime leads to an
increased rate at low temperature.
In Fig.3.20 the total decoherence rate of 〈GS+| ρs |GS−〉 = e−Γdect 〈GS+| ρs(0) |−〉 is
shown, the decoherence rate is strongly suppressed at low temperature in the topo-
logical regime, whereas in the trivial regime the two states are not protected against
dephasing, because interaction as well as the pure dephasing contribution are leading
to an increase in the trivial regime.

Topological regime: t < J

Figure 3.18: Even parity subspace in blue and odd parity subspace in red. In the
topological regime the two (nearly degenerate) lowest states can interact only with
states |k, q〉 (with the respective parity) gapped by the energy Egap = Ek + Eq. Hence
that decoherence rate is determined by the gap energy Egap and the number of excited
states the two lowest states can interact (scales with N).
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Trivial regime: t > J

Figure 3.19: Even parity subspace in blue and odd parity subspace in red. In the trivial
regime the lowest states can interact with states gapped by the energy Egap = Ek1+Ek2.
The lowest state of the odd subspace |GS−(k=0)〉 can also interact with slightly higher
excited states |k−〉 = γ†kγk=0 |GS−(k=0)〉 with energy difference Ek − E0 << Egap.

Figure 3.20: Decay rate Γdec = θ(t − J)
(

1
NTφ

+ Γl
)

+ Γ(l)
± of the coherence between

the two lowest states |GS+〉 and |GS−〉 normalized with the single spin dephasing rate
1
Tφ

= ηπkBT (see 1.3) for N = 40 spins. At low temperature the dephasing rate can be
strongly suppressed in the topological regime.
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Dissipation in the open Ising chain

For the open chain, the same interaction to the environment HB is assumed

H = Hs +HB +Hint (4.0.1)

Hs = −t
N∑
i

σzi − J
N−1∑
i

σxi σ
x
i+1 (4.0.2)

Hint =
N∑
i=1

σzi B̂i . (4.0.3)

4.1 Transformation of the interaction
In the open chain there is no discrimination between the even and the odd parity
subspace, thus using the Jordan-Wigner transformation and the transformation for
diagonalizing the quadratic fermionic Hamiltonian (see 2.2.1) leads for the parity con-
serving coupling term to

σzn = 1− 2
∑
i,j

[
(u∗inujn − vjnv∗in) γ†i γj + (vinujnγiγj + h.c.)

]
, (4.1.1)

whereas i = 0, ..., N − 1, uin = uki,n, vin = vki,n and γi = γki as introduced in the
notation in 2.2.3 for simplification (i = 0 the lowest excitation and i = N − 1 the
largest excitation in energy).
By using the time evolution of the eigenoperators γi and γ†i we find the time evolution
of the interaction

σzn(t) = 1− 2
∑
i,j

[
ei(Ei−Ej)t (u∗inujn − vjnv∗in) γ†i γj +

(
e−i(Ej+Ei)tvinujnγiγj + h.c.

)]
.

(4.1.2)

62
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4.2 Master equation
With the bath correlator Fn1,n2(t− t′), the Redfield master equation can be expressed
in the compact form

dρs
dt

= −
∫ t

t0
dt
′ ∑
n1,n2

Fn1,n2(t− t′)[σzn1(t), σzn2(t′)ρs(t)]

+ Fn2,n1(t′ − t)[ρs(t)σzn2(t′), σzn1(t)]
 . (4.2.1)

In the appendix D the complete Lindblad master equation is derived starting from
the Redfield master equation. With the use of the Rotating Wave Approximation and
omitting the Lamb shift terms, we arrive to

dρs
dt

=
∑
n1,n2

4
∑

i1,i2,j1,j2
Ai1,j1,n1Ai2,j2,n2δEi1−Ej1,Ej2−Ei2κn1,n2(Ei1 − Ej1)
(
γ†i2γj2ρsγ

†
i1γj1 −

1
2{γ

†
i1γj1γ

†
i2γj2, ρs}

)
+ 4

∑
i1,i2,j1,j2

Ai1,j1,n1uj2,n2vi2,n2δEi1−Ej1,Ei2+Ej2κn1,n2(Ei1 − Ej1)
(
γi2γj2ρsγ

†
i1γj1 −

1
2{γ

†
i1γj1γi2γj2, ρs}

)
+ 4

∑
i1,i2,j1,j2

Ai1,j1,n1u
∗
j2,n2v

∗
i2,n2δEi1−Ej1,−Ei2−Ej2κn1,n2(Ei1 − Ej1)

(
γ†j2γ

†
i2ρsγ

†
i1γj1 −

1
2{γ

†
i1γj1γ

†
j2γ
†
i2, ρs}

)
+ 4

∑
i1,i2,j1,j2

uj1,n1vi1,n2Ai2,j2,n2δEi1+Ej1,Ei2−Ej2κn1,n2(−Ei1 − Ej1)
(
γ†i2γj2ρsγi1γj1 −

1
2{γi1γj1γ

†
i2γj2, ρs}

)
+ 4

∑
i1,i2,j1,j2

uj1,n1vi1,n1u
∗
j2,n2v

∗
i2,n2δEi1+Ej1,Ei2+Ej2κn1,n2(−Ei1 − Ej1)

(
γ†j2γ

†
i2ρsγi1γj1 −

1
2{γi1γj1γ

†
j2γ
†
i2, ρs}

)
+ 4

∑
i1,i2,j1,j2

u∗j1,n1v
∗
i1,n1uj2,n2vi2,n2δEi1+Ej1,Ei2+Ej2κn1,n2(Ei1 + Ej1)
(
γi2γj2ρsγ

†
j1γ
†
i1 −

1
2{γ

†
j1γ
†
i1γi2γj2, ρs}

)
+ 4

∑
i1,i2,j1,j2

u∗j1,n1v
∗
i1,n1Ai2,j2,n2δEi1+Ej1,Ej2−Ei2κn1,n2(Ei1 + Ej1)
(
γ†i2γj2ρsγ

†
j1γ
†
i1 −

1
2{γ

†
j1γ
†
i1γ
†
i2γj2, ρs}

) , (4.2.2)
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with Ai,j,n = vjnv
∗
in − u∗inujn and κn1,n2(ω) =

∫∞
−∞ dte

iωtFn1,n2(t) the Fourier transform
of the bath correlator.

4.3 Global bath coupling
For a global bath the correlator of the bath does not depend on the spin sites, such
that for ohmic spectral density K(ω) = ηω, we have

κn1,n2(ω) = κ(ω) = K(ω) [θ(ω)(1 + nB(ω)) + θ(−ω)nB(−ω))] (4.3.1)

With the bosonic distribution function nB(ω).

4.3.1 Decoherence
The off diagonal element between the two lowest states |GS〉 (even parity) and |0〉 =
γ†0 |GS〉 (odd parity), which is nearly degenerate with the ground state in the topological
regime (see 2.2.2), reads in the whole parameter regime as

d 〈GS| ρs |0〉
dt

=
∑
n1,n2

− 2
∑
i1,i2

A0,i1,n1Ai1,0,n2κ(E0 − Ei1) 〈GS| ρs |0〉

+ 4
∑

i1,i2,j1
Ai1,0,n1uj1,n2vi2,n2δEi1−E0,Ei2+Ej1κ(Ei1 − E0) 〈i2, j1| ρs |i1〉

− 2
∑
i1,j1

uj1,n1vi1,n1(u∗j1,n2v
∗
i1,n2 − u∗i1,n2v

∗
j1,n2)κ(−Ei1 − Ej1) 〈GS| ρs |0〉

− 2
∑

i1,j16=0
uj1,n1vi1,n1(u∗j1,n2v

∗
i1,n2 − u∗i1,n2v

∗
j1,n2)κ(−Ei1 − Ej1) 〈GS| ρs |0〉

+ 4
∑

i1,i2,j1,j2
u∗j1,n1v

∗
i1,n1uj2,n2vi2,n2δEi1+Ej1,Ei2+Ej2

κ(Ei1 + Ej1) 〈GS| γi2γj2ρsγ†j1γ
†
i1 |0〉

 . (4.3.2)

with |i〉 = γ†i |GS〉 (with i=0,..,N-1) as discussed in 2.2.3.
At low temperature κ(Ei1+Ej1) > κ(Ei−E0) >> κ(E0−Ej1) > κ(−Ek1−Ej1), thus in
the steady state solution 〈GS| ρs |0〉s >> 〈i2, j2| ρs |i1〉s > 〈GS| γi2γj2ρsγ

†
j1γ
†
i1 |0〉s ≈ 0.

Therefore one can assume 〈i2, j2| ρs |i1〉 (t) ≈ 0 and 〈GS| γi2γj2ρsγ†j1γ
†
i1 |0〉 (t) ≈ 0 if
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the initial value of these matrix elements are zero. Hence at low temperature the off
diagonal element between the two lowest states reads

d 〈GS| ρs |0〉
dt

=
∑
n1,n2

− 2
∑
i1
A0,i1,n1Ai1,0,n2κ(E0 − Ei1)

− 2
∑
i1,j1

uj1,n1vi1,n1(u∗j1,n2v
∗
i1,n2 − u∗i1,n2v

∗
j1,n2)κ(−Ei1 − Ej1)

− 2
∑

i1,j16=0
uj1,n1vi1,n1(u∗j1,n2v

∗
i1,n2 − u∗i1,n2v

∗
j1,n2)κ(−Ei1 − Ej1)

 〈GS| ρs |0〉
=
− 2

∑
n1,n2

A0,0,n1A0,0,n2︸ ︷︷ ︸
G

κ0 − 2
∑
n1,n2

∑
i16=0

A0,i1,n1Ai1,0,n2κ(E0 − Ei1)
︸ ︷︷ ︸

Γs

− 2
∑
n1,n2

∑
i1,j1

uj1,n1vi1,n1(u∗j1,n2v
∗
i1,n2 − u∗i1,n2v

∗
j1,n2)κ(−Ei1 − Ej1)

− 2
∑
n1,n2

∑
i1,j16=0

uj1,n1vi1,n1(u∗j1,n2v
∗
i1,n2 − u∗i1,n2v

∗
j1,n2)κ(−Ei1 − Ej1)

︸ ︷︷ ︸
Γd

 〈GS| ρs |0〉
= − (2Gκ0 + Γs + Γd) 〈GS| ρs |0〉 , (4.3.3)

with the expressions

uin = 1
2 (φkin + ψkin) = c (ski sin(kin) + sin(ki(N + 1− n)))

vin = 1
2 (φkin + ψkin) = c (sin(ki(N + 1− n))− ski sin(kin))

G =
∑
n1,n2

A0,0,n1A0,0,n2 =
(∑
n1
φk0,n1ψk0,n1

)2

, (4.3.4)

where c is the normalization constant, such that ∑n |φn|2 = 1.
Thus the coherence of the two lowest states decays exponentially with the prefactor in
eq.4.3.3 as decay rate.
First lets have a look on the function G, which describes the global overlap between
φk0 and ψk0 . In the topological regime these represent the localized solution with only
small overlap. Hence the pure dephasing contribution of the single spin dephasing rate
2κ0 = 1/Tφ drops out for (t/J)N → 0, see Fig.4.1. In the trivial regime there is an
increase by the single spin dephasing rate, as G ∼ 1 (no localized solution anymore).
Besides there is Γs contributing to the decoherence rate, due to the interaction of |0〉
with γ†i γ0 |0〉 = |i〉 with energy difference Ei−E0. This interaction contribution can be
exponentially suppressed for kBT << Ei − E0, see Fig.4.2(a).
The last term in the decoherence rate Γd is due to the interaction of the two lowest states
with higher excited states (e.g. |GS〉 with γ†i1γ

†
i2 |GS〉 = |i1, i2〉) with energy difference

of Ei1 + Ei2 and can be suppressed as well at low temperature, see Fig.4.2(b).
Due to the reduced gap energy to higher excited states near the critical point Γs + Γd
is increased at this point, see Fig.4.3.
At low temperature (e.g. kBT = 0.3J) the decoherence rate does not scale with N
(plotted in Fig.4.3(a)) for t << J .
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Besides for t >> J the rate Γs tends to zero for global bath coupling, indicating also
suppressed interaction of |0〉 with |i〉 in the trivial regime (see also next chapter).

Figure 4.1: G (eq.4.3.4) plotted over t/J for different numbers of spins. The function
describes the overlap of the localized solutions in the topological regime (scales with
(t/J)N), where G tends to zero. In the trivial regime it tends to 1 (no localized solution
anymore).

(a) Γs (b) Γd

Figure 4.2: Γs and Γd (eq.4.3.3) plotted over the temperature for N = 20. Γd is sup-
pressed for kBT << Ei1 + Ei2 and Γs for kBT << Ei − E0 < Ei1 + Ei2.
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(a) kBT = 0.3J (b) kBT = 0.6J

Figure 4.3: Γs + Γd (eq.4.3.3) at kBT = 0.3J (a) and kBT = 0.6J (b) plotted over t/J .
At low temperature Γs + Γd do not scale with N for small t/J . Close to t = J the
rate (Γs + Γd) is increased and scales strongly with N . Whereas for large t/J the rate
(Γs + Γd) tends to zero.

4.3.2 Energy relaxation
Here we will focus on the relaxation of the lowest possible excitation for each subspace.
Such that for the even parity subspace the states |i1, i2〉 (which relax to |GS〉) will be
analyzed.
The connection to higher excited states will be neglected as for low temperature their
steady state solution will be approximately zero, thus if not initially occupied they can
be approximated by zero occupation

d 〈GS| ρs |GS〉
dt

= −4
∑
n1,n2

∑
i1,i2,j1,j2

uj1,n1vi1,n1(u∗j1,n2v
∗
i1,n2 − u∗i1,n2v

∗
j1,n2)

κ(−Ei1 − Ej1) 〈GS| ρs |GS〉
+ 4

∑
n1,n2

∑
i1
u∗j1,n1v

∗
i1,n1(uj1,n2vi1,n2 − ui1,n2vj1,n2)

κ(Ei1 + Ej1) 〈i1, j1| ρs |i1, j1〉 . (4.3.5)
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Neglecting the interaction with higher excited states the equation for the lowest exci-
tations with even parity reads

d 〈i1, j1| ρs |i1, j1〉
dt

=
∑
n1,n2

4
∑
i26=j1

Ai2,i1,n1Ai1,i2,n2κ(Ei2 − Ei1) 〈j1, i2| ρs |j1, i2〉

+ 4
∑
i26=i1

Ai2,j1,n1Aj1,i2,n2κ(Ei2 − Ej1) 〈i1, i2| ρs |i1, i2〉

− 4
∑
i2 6=i1

Aj1,i2,n1Ai2,j1,n2κ(Ej1 − Ei2) 〈i1, j1| ρs |i1, j1〉

− 4
∑
i26=j1

Ai1,i2,n1Ai2,i1,n2κ(Ei1 − Ei2) 〈i1, j1| ρs |i1, j1〉

+ 8ui1,n1vj1,n1(u∗i1,n2v
∗
j1,n2 − u∗j1,n2v

∗
i1,n2)κ(−Ei1 − Ej1) 〈GS| ρs |GS〉

− 8ui1,n1vj1,n1(u∗i1,n2v
∗
j1,n2 − u∗j1,n2v

∗
i1,n2)κ(Ei1 + Ej1) 〈i1, j1| ρs |i1, j1〉

 .
(4.3.6)

And for the odd parity sector we have for the lowest excitations (neglecting interaction
with higher excited states for low temperature, as κ(−Ei) >> κ(−Ei1 − Ei2)):

d 〈i| ρs |i〉
dt

=
∑
n1,n2

4
∑
j1
Aj,i,n1Ai,j,n2κ(Ej − Ei) 〈j| ρs |j〉

− 4
∑
j

Ai,j,n1Aj,i,n2κ(Ei − Ej) 〈i| ρs |i〉
 , (4.3.7)

with the notation that i, j = 0, ...N − 1 with increasing energy of the referring state as
introduced in 2.2.3 (e.g. the state |0〉 has the lowest energy ).
The numerical results of the relaxation rate ri1,i2 of a state |i1, i2〉 to the ground state
|GS〉 is plotted in Fig.4.4, and the numerical result for the relaxation rate ri of a state
|i〉 to |0〉 is plotted in Fig.4.5.
The relaxation is similar as for the closed chain, where only states with the excitation
|k,−k〉 (two degenerate excitation k and −k) can relax to |GS〉 (such that the total
pseudo-momentum k is conserved). This is similar for the open chain such that states
with |i, i+ 1〉 (two excitations with nearly the same energy) have some finite relaxation
rate, and for all other states it is strongly suppressed (see Fig.4.4).
Besides there is an additional symmetry in the interaction for a global bath coupling.
E.g. in the topological regime there are also the states |0, i〉 = γ†0γi |GS〉, which have
finite relaxation rates for i = odd and no relaxation to |GS〉 for i = even. The reason
for that is the symmetry of the wave functions (ui(n)) in respect to n ↔ N + 1 − n
(which only appears for the open chain with two ends).
If you e.g. assume a symmetric mode us(n) = us(N + 1 − n) and the antisymmetric
mode ua(n) = −ua(N + 1− n) (in respect to the fermionic occupation n̂n) the global
overlap guided by the global bath is always zero ∑n us(n)ua(n) = 0.
Hence only interaction between states with the same symmetry in respect to the two
ends of the chain is possible, which is depicted in Fig.4.4 in the ”checkerboard" like
pattern.
The same behavior can be also seen in the odd parity subspace (see Fig.4.5), where
only |i = even〉 states can relax to the zero mode |0〉, due to the symmetry reasons in
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respect of the ends of the chain. Here one can also see that in the trivial regime the
interaction/relaxation is strongly suppressed for single excited states |i〉 to |0〉.

(a) t/J = 2 (b) t/J = 0.9

(c) t/J = 0.1

Figure 4.4: Comparison of the energy relaxation ri1,i2 of a state |i1, i2〉 to |GS〉 (where i
is the index, such that i = 0 is the lowest excitation and i = N−1 the largest excitation
in energy) for N = 30 spins at zero temperature for different ratio t/J . For most states
the relaxation process is strongly suppressed, only the relaxation for |i, i+ 1〉 is not
suppressed. Besides one can see that only certain states (e.g. |i = odd, 0〉) have finite
relaxation rates, due to symmetry reasons (see text).
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(a) t/J = 0.1 (b) t/J = 2

Figure 4.5: Energy relaxation rate ri of the odd subspace for the lowest excitation |i〉
to |0〉 at different ratio t/J . One can see that the relaxation is strongly suppressed in
the trivial regime, the relaxation rate is several magnitudes lower as in the topological
regime. States which have symmetric ui=even(n) in respect to the ends of the chain
can relax to the state |0〉. Other modes with anti symmetric ui=odd(n) have zero global
overlap with |0〉 and thus cannot relax to this state.

4.3.3 Overview
For global coupling to the environment there is interaction to higher excited states
with energy difference Ei1 +Ei2 (e.g. |GS〉 with |i1, i2〉) in the whole parameter regime.
The interaction is (mainly) with states |i, i+ 1〉 for |GS〉 in the trivial regime, as the
interaction with other states is negligible for t > J (see 4.3.2).
Besides there is also interaction to states with a singly excited states in the topological
regime as depicted in Fig.4.6 with energy difference ∼ Ei. Due to the global coupling
there is a symmetry restricted interaction (in respect to the two ends of the chain, see
4.3.2).
For the trivial regime there is additionally to the interaction with excited states also a
pure dephasing contribution to the decoherence rate.
In Fig.4.8 the total decoherence rate of 〈GS| ρs |0〉 = e−Γdect 〈GS| ρs(0) |0〉 is shown, the
decoherence rate is strongly suppressed at low temperature in the topological regime,
whereas in the trivial regime the two states are not protected against dephasing, due
to additional pure dephasing in this regime.
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Topological regime:

Figure 4.6: In the topological regime both ground states can interact with states with
a single finite energy mode and energy difference ∼ Ei and states gapped by the energy
Ei + Ei+1.

Trivial regime:

Figure 4.7: In the trivial regime the lowest states can interact with states gapped by
the energy Ei +Ei+1. Besides the lowest states do not belong to the same excitational
subspace anymore, as |0〉 is now a finite energy state.
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Figure 4.8: Decay rate Γdec = G
Tφ

+ Γs + Γd (eq.4.3.3) of the coherence between the two
lowest states |GS〉 and |0〉 normalized with the single spin dephasing rate 1

Tφ
= ηπkBT

(see 1.3) for N = 40 spins. At low temperature the dephasing rate can be strongly
suppressed in the topological regime.
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4.4 Local bath coupling
When each spin is locally coupled to a bosonic bath, the symmetrized noise correlator
is only nonzero at the same spin sites

κn1,n2(ω) = δn1,n2κ(ω) . (4.4.1)

Hence we have to insert in the Lindblad equation the additional δn1,n2 terms (in
eq.4.3.3).

4.4.1 Decoherence
At low temperature the same approximation as for the global bath can be done, hence
the off diagonal element between the two lowest states in the low temperature approx-
imation reads

d 〈GS| ρs |0〉
dt

=
− 2

∑
n1
A0,0,n1A0,0,n1︸ ︷︷ ︸

G(l)

κ0 − 2
∑
n1

∑
i16=0

A0,i1,n1Ai1,0,n1κ(E0 − Ei1)
︸ ︷︷ ︸

Γ(l)
s

− 2
∑
n1

∑
i1,j1

uj1,n1vi1,n1(u∗j1,n1v
∗
i1,n1 − u∗i1,n1v

∗
j1,n1)κ(−Ei1 − Ej1)

− 2
∑
n1,n2

∑
i1,j16=0

uj1,n1vi1,n1(u∗j1,n1v
∗
i1,n1 − u∗i1,n1v

∗
j1,n1)κ(−Ei1 − Ej1)

︸ ︷︷ ︸
Γ(l)
d

 〈GS| ρs |0〉

= −
(
2G(l)κ0 + Γ(l)

s + Γ(l)
d

)
〈GS| ρs |0〉 . (4.4.2)

with

G(l) =
∑
n1
A0,0,n1A0,0,n1 =

∑
n

φ2
k0,nψ

2
k0,n . (4.4.3)

The pure dephasing term G(l)κ0 is only nonzero in the trivial phase as depicted in
Fig.4.9, as the local overlap G(l) of the localized solutions are zero in the topological
regime. In the trivial regime G(l) tends to a constant value depending on N (no localized
solutions anymore), leading to a pure dephasing contribution to the total decoherence
rate in the trivial regime.
Besides there is Γ(l)

s contributing to the decoherence rate, due to interaction of |0〉 with
γ†i γ0 |0〉 = |i〉 with energy difference Ei−E0, see Fig.4.10(a). For t < J we have E0 ≈ 0
and the interaction is gapped by the energy Ei, leading to a suppressed interaction
at low temperature. In the trivial regime Ei − E0 << Ei (as E0 ∼ Ei) leading to an
increased interaction even at low temperature.
The last term in the decoherence rate Γ(l)

d is due to the interaction of the two low-
est states with higher excited states(e.g. |GS〉 with |i1, i2〉) with energy difference of
Ei1 + Ei2. Hence it is suppressed for kBT << Ei1 + Ei2.
Due to the reduced gap energy to higher excited states at t = J , Γ(l)

s + Γ(l)
d is increased

near the critical point (see Fig.4.11). For t > J the gap energy to higher excited states
(e.g. |GS〉 with |i1, i2〉) increases, leading to a decreased rate of Γ(l)

d . On the other hand
the energy difference of |0〉 with |i〉 is decreased for t > J (as |0〉 becomes a finite energy
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state in this regime) leading also to an enhanced rate Γ(l)
s . The interplay of those two

different interactions leads to a non-monotonic behavior shown in Fig.4.11.
Besides at low temperature (e.g. kBT = 0.3J as depicted in Fig.4.11(a)) the decoher-
ence rate does not scale with N for t << J .

Figure 4.9: G(l) (eq.4.4.3) plotted over t/J for different numbers of spins. The function
describes the overlap of the occupation probability of the localized solutions in the
topological regime (scales with (t/J)N), where G tends to zero. In the trivial regime it
tends to a finite value depending on N (no localized solution anymore).

(a) Γ(l)
s (b) Γ(l)

d

Figure 4.10: Γ(l)
s and Γ(l)

d (eq.4.4.2) plotted over the temperature for N = 20. Γ(l)
d is

suppressed for kBT << Ei1 + Ei2 and Γd for kBT << Ei − E0.



Chapter 4. Dissipation in the open Ising chain 75

(a) kBT = 0.3J (b) kBT = 0.6J

Figure 4.11: Γ(l)
s + Γ(l)

d (eq.4.4.2) at kBT = 0.3J (a) and kBT = 0.6J (b) plotted over
t/J . At low temperature Γ(l)

s + Γ(l)
d do not scale with N for small t/J . Close to t = J

Γs + Γd is increased and scales strongly with N .

4.4.2 Energy relaxation
Here we will focus on the relaxation of the lowest possible excitation for each subspace.
Such that in the even parity subspace the relaxation of the states |i1, i2〉 ,which relax
to |GS〉, will be determined. The connection to higher excited states will be neglected,
as for low temperature their steady state solution will be ≈ 0, thus if not initially
occupied, they can be approximated with 0

d 〈GS| ρs |GS〉
dt

= −4
∑
n1

∑
i1,i2,j1,j2

uj1,n1vi1,n1(u∗j1,n1v
∗
i1,n1 − u∗i1,n1v

∗
j1,n1)

κ(−Ei1 − Ej1) 〈GS| ρs |GS〉
+ 4

∑
n1,n2

∑
i1
u∗j1,n1v

∗
i1,n1(uj1,n1vi1,n1 − ui1,n1vj1,n1)

κ(Ei1 + Ej1) 〈i1, j1| ρs |i1, j1〉 (4.4.4)
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Neglecting the interaction with higher excited states the equation for the lowest exci-
tations with even parity reads

d 〈ia, ib| ρs |ia, ib〉
dt

=
∑
n1

4
∑
i16=ib

Ai1,ia,n1Aia,i1,n2κ(Ei1 − Eia) 〈ib, i1| ρs |ib, i1〉

+ 4
∑
i16=ia

Ai1,ib,n1Aib,i1,n1κ(Ei1 − Eib) 〈ia, i1| ρs |ia, i1〉

− 4
∑
j16=ia

Aib,j1,n1Aj1,ib,n1κ(Eib − Ej1) 〈ia, ib| ρs |ia, ib〉

− 4
∑
j1 6=ib

Aia,j1,n1Aj1,ia,n1κ(Eia − Ej1) 〈ia, ib| ρs |ia, ib〉

+ 8uia,n1vib,n1(u∗ia,n1v
∗
ib,n1 − u∗ib,n1v

∗
ia,n1)κ(−Eia − Eib) 〈GS| ρs |GS〉

− 8uia,n1vib,n1(u∗ia,n1v
∗
ib,n1 − u∗ib,n1v

∗
ia,n1)κ(Eia + Eib) 〈ia, ib| ρs |ia, ib〉

 .
(4.4.5)

And for the odd parity sector we have for the lowest excitations (neglecting interaction
with higher excited states for low temperature, as κ(−Ei) >> κ(−Ei1 − Ei2)):

d 〈i| ρs |i〉
dt

=
∑
n1

4
∑
j

Aj,i,n1Ai,j,n1κ(Ej − Ei) 〈j| ρs |j〉

− 4
∑
j

Ai,j,n1Aj,i,n1κ(Ei − Ej) 〈i| ρs |i〉
 . (4.4.6)

The numerical results of the relaxation rate ri1,i2 of a state |i1, i2〉 to the ground state
|GS〉 is plotted in Fig.4.12, and the numerical determined relaxation rates ri of a state
|i〉 to |0〉 is plotted in Fig.4.13.
We can see that all states have finite relaxation rates to the lowest states (with the same
parity). One can see that in the trivial regime the states with higher energy decaying
more rapidly, as they have more possible decay channels (due to the decay via lower
lying states). In the topological regime the direct decay from a state to the ground
state gets more dominant, such that states |ki〉 with i ≈ N/2 (lying in the middle of
the excitational band) have larger decay rates.
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(a) t/J = 2 (b) t/J = 0.5

(c) t/J = 0.1

Figure 4.12: Comparison of the energy relaxation rate ri1,i2 of a state |i1, i2〉 (where i is
the index, such that i = 0 is the lowest excitation and i = N − 1 the largest excitation
in energy) to the ground state |GS〉 for N = 30 spins at zero temperature for different
ratio t/J . In the trivial regime the higher energetic excitation are relaxing more rapidly
as the lower excitations. In the topological regime with t/J = 0.1 there is not a simple
relation between the energy of the state and the rate anymore. The rate tends to be
larger for states, which are in the middle of the excitational band i ' N/2.
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(a) t/J = 2 (b) t/J = 0.1

Figure 4.13: Energy relaxation at zero temperature of the odd subspace for the lowest
excitation |i〉 to |0〉 at different ratio t/J . In the trivial regime the states with larger
energy do relax faster, as they have more decay channels (through lower states). In the
topological regime the states with i ' N/2 have increased rates.

4.4.3 Overview
In the topological regime the decoherence is determined by the interaction with the
singly excited states gapped by Ei and the doubly excited states gapped by Ei1+Ei2, see
Fig.4.14. In the trivial regime there is additionally to the interaction with the gapped
states, also the interaction of |0〉 with |i〉, leading to an increased decoherence rate even
at low temperature due to the small energy difference of Ei −E0. Besides there is also
a pure dephasing contribution in the trivial regime to the total decoherence rate.
In Fig.4.16 the total decoherence rate of 〈GS| ρs |0〉 = e−Γdect 〈GS| ρs(0) |0〉 is shown, the
decoherence rate is strongly suppressed at low temperature in the topological regime,
whereas in the trivial regime the two states are not protected against dephasing, because
interaction as well as the pure dephasing contribution are leading to an increase in the
trivial regime.
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Topological regime:

Figure 4.14: In the topological regime both ground states can interact with states
gapped by Ei and with states that are gapped by the energy Ei1 + Ei2.

Trivial regime:

Figure 4.15: In the trivial regime the lowest states can interact with states gapped
by the energy Ei1 + Ei2. The lowest excitation |0〉 can also interact with other singly
excited states with energy difference Ei − E0 << Ei1 + Ei2.
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Figure 4.16: Decay rate Γdec = G(l)

Tφ
+ Γ(l)

s + Γ(l)
d (eq.4.4.2) of the coherence between

the two lowest states |GS〉 and |0〉 normalized with the single spin dephasing rate
1
Tφ

= ηπkBT (see 1.3) for N = 40 spins. At low temperature the dephasing rate can be
strongly suppressed in the topological regime.



Conclusion

We evaluated the dynamics of the lowest states in the transverse Ising model with
single site dephasing, which is a realistic assumption for the dissipation for specific
qubits/spins (as discussed in 1.2). The ground states of the spin chain shows robust-
ness against the single site dephasing in the topological regime for temperature lower
than the gap energy, as the ground states are isolated to the lowest excitations and
for kBT → 0 the decoherence rate can be completely suppressed for the two topo-
logical states, such that they can be used for topological quantum computation with
long coherence time. This robustness against dephasing holds for open or closed chains
and also for global and local correlation of the bath. In the trivial regime there will
be an increase of the decoherence rate due to a pure dephasing contribution. For local
bath correlation, there is also an increase in the trivial regime due to the interaction
of the lowest odd parity state with other singly excited states. Hence there are two
qualitatively different types of behaviour of the decoherence in the two phases of the
spin chain.
One main difference in the topological regime between open and closed chains is that
there can also be interaction with excited states gapped by Ei in the open chain, which
is approximately half the gap energy as in the closed chain (where the lowest excita-
tions are gapped by Ek1 + Ek2).
Another difference is also that there is an (almost) linear scaling on N of the deco-
herence rate for the closed chain in the whole topological regime, whereas in the open
chain there can be also constant behavior in N of the decoherence rate at low temper-
ature (see Fig.4.3 and Fig.4.11).
Generally, the robustness of the ground states in the topological regime holds for any
bath coupling which conserves the parity as the gap energy suppresses interaction of
the ground states with excited states for low temperature. This means the topological
ground states are also robust against fluctuations in J and t, as fluctuations in these
terms conserve the parity.
However, energy relaxation of the single spins/qubits would break the parity conserva-
tion hence also allowing interaction between the two lowest states and thus also break
the suppressed interaction for temperature below the gap energy. Thus the robustness
of the ground states is only against dephasing of the single spins. For a more general
model one would also need to implement the energy relaxation of the single spins to
extend the model also for chains with spins that are in the regime of T1 ∼ T2 or for
times which are in the range of the energy relaxation time T1.
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Appendix

A Pure dephasing rate

Γ0(t) = η
∫ ∞

0
dωe−ω/Ω

1− cos(ωt)
ω

coth
(

ω

2kBT

)
= η

∫ ∞
0

dωe−ω/Ω
1− cos(ωt)

ω
+ η

∫ ∞
0

dωe−ω/Ω
1− cos(ωt)

ω

(
coth

(
ω

2kBT

)
− 1

)
= η

2 ln
(
1 + Ω2t2

)
+ η

∫ ∞
0

dωe−ω/Ω
1− cos(ωt)

ω

(
coth

(
ω

2kBT

)
− 1

)
= η

2 ln
(
1 + Ω2t2

)
+ kBTη

∫ t

0
dt′
∫ ∞

0
dxe−kBTx/Ω sin (kBTxt′)

(
coth

(
x

2

)
− 1

)
(A.1)

for kBT << Ω we have

kBTη
∫ t

0
dt′
∫ ∞

0
dxe−kBTx/Ω sin (kBTxt′)

(
coth

(
x

2

)
− 1

)
≈ kBTη

∫ t

0
dt′
∫ ∞

0
dx sin (kBTxt′) (coth (x/2)− 1)

= η ln
(

sinh(πkBTt)
πkBTt

)
. (A.2)

By using the integral∫ ∞
0

dx sin(αx) (coth(x/2)− 1) = π coth(πα)− 1
α
. (A.3)

B Ising chain

B.1 Properties of the non-local phase
With the non-local phase of the Jordan-Wigner transformation

ν̂n =
n−1∏
m=1

(
ei
π
2 (1−σzm)

)
=
(
ei
π
2
)n−1 n−1∏

m=1

(
e−i

π
2 σ

z
m

)
= in−1

n−1∏
m=1

(
−iσzm sin

(
π

2

))

= in−1 (−i)n−1
n−1∏
m=1

σzm =
n−1∏
m=1

σzm =
n−1∏
m=1

(1− 2n̂m) (B.1)

it follows

ν̂†n =
n−1∏
m=1

(
e−i

π
2 (1−σzm)

)
=

n−1∏
m=1

σzm =
n−1∏
m=1

(
ei
π
2 (1−σzm)

)
= ν̂n. (B.2)

B.2 Jordan-Wigner transformation
For the number operator we have

n̂n = ĉ†nĉn = σ−n σ
+
n = 1− σzn

2 . (B.3)
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Transformation of the nearest neighbor interaction:

σxnσ
x
n+1 =

(
σ+
i + σ−i

) (
σ+
i+1 + σ−i+1

)
=
(
ĉn + ĉ†n

) (
ĉn+1 + ĉ†n+1

)
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=
(
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) (
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)
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1
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)
= ĉ†nĉ

†
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And the boundary term transforms to

σxNσ
x
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(
ĉN + ĉ†N

) (
ĉ1ĉ
†
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)
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. (B.5)

B.3 Fourier transformation of the even subspace
The first interaction terms can be transformed to

N∑
n=1

ĉ†nĉn+1 =
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ĉ†k0 ĉk1e
i π
N
k1δk0,k1

=
∑
k0
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ĉ†k0 ĉk02 cos
(
π

N
k0

)
. (B.6)

Here was used that for k1 = k0

1
N

(
N−1∑
n=1

(
ei

π
N
n(k1−k0)

)
+ 1

)
= 1 , (B.7)
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and for k1 6= k0
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The last step is true, since k1 − k0 has to be an even integer (difference between two
odd values).
In that way also the second interaction term transforms to
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ĉk0 ĉ−k0
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The kinetic term transforms to
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This leads for the even parity subspace Hamiltonian
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B.4 Bogoliubov transformation
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(B.12)

To diagonalize this Hamiltonian a Bogoliubov transformation is applied with

ĉk = ukγ̂k + vkγ̂
†
−k (B.13)

ĉ†−k = −vkγ̂k + ukγ̂
†
−k (B.14)

Here is u2
k + v2

k = 1, u2
k = 1

2

(
1 + ξk
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)
and v2

k = 1
2

(
1− ξk

Ek

)
. This leads to a diagonalized

Hamiltonian with the new quasiparticle operators γ̂k
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B.5 General transformation for a quadratic Hamiltonian
Consider a quadratic fermionic Hamiltonian in the following form (∆ij is assumed to
be real)

∑
i,j

[
tij â

†
i âj + 1
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†
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†
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(ĉ†
ĉ

)
. (B.16)

One can introduce the transformation ([40])

γk =
∑
i

(
ukiâi + vkiâ

†
i

)
(B.17)

γ†k =
∑
i

(
u∗kiâ

†
i + v∗kiâi

)
, (B.18)



Appendix 89

to diagonalize the Hamiltonian to

H
′ =

∑
k

Ekγ
†
kγk + E0 . (B.19)

The transformation is then determined by[
γν , H

′] = Eνγν = Eν
∑
i

(
uνiâi + vνiâ

†
i

)
=
[∑
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]
. (B.20)

With the commutators [
âi, â

†
j âk
]

= δij âk (B.21)[
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†
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†
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= δikâj − δij âk , (B.25)

one can determine the commutator (B.20)
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By comparing the terms which contains â and the terms which contain â† one gets two
equations

∑
ik
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2
∑
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1
2
∑
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∑
ik
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2
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1
2
∑
ij

uνi∆jiâ
†
j = Eν

∑
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These two equations can be split up into 2N equations by comparing every term which
contains the same âi or â†i

∑
p

(
uνptpi + 1

2vνp∆ip −
1
2vνp∆pi

)
âi = Eνuνiâi (B.29)

∑
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1
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)
â†i = Eνvνiâ

†
i . (B.30)
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As ∆ij = −∆ji (assuming ∆ij is real) and tij = tji it follows∑
p

(tipuνp + ∆ipvνp) = Eνuνi (B.31)∑
p

(−tipvνp −∆ipuνp) = Eνvνi . (B.32)

For fixed ν it can be expressed in a compact form

¯̄T~u+ ¯̄∆~v = E~u (B.33)

− ¯̄T~v − ¯̄∆~u = E~v (B.34)

with

~u(ν) =


u

(ν)
1
...
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( ¯̄T
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pi
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And with ~φ = ~u− ~v and ~ψ = ~u+ ~v we have

E~ψ =
(

¯̄T − ¯̄∆
)
~φ (B.35)

E~φ =
(

¯̄T + ¯̄∆
)
~ψ . (B.36)

This transformation can be also used to derive the transformation for the closed chain
(as done previously with the Fourier and Bogoliubov transformation) and can be seen
in the appendix.B.7.

B.6 Back transformation
Consider

ân =
∑
k

uknγk + v∗knγ
†
k (B.37)

â†n =
∑
k

u∗knγ
†
k + vknγk , (B.38)
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hence the commutator can be expressed as

[ân, H] =
∑
ij

δnitij âj + 1
2∆ij

(
δniâ

†
j − δnj â

†
i

)
=
∑
j

tnj âj + 1
2
(
∆nj â

†
j −∆jnâ

†
j

)
=
∑
j

∑
k

tnj
(
ukjγk + v∗kjγ

†
k

)
+ 1

2
(
∆nj

(
u∗kjγ

†
k + vkjγk

)
−∆jn

(
u∗kjγ

†
k + vkjγk

))
(B.39)

[ân, H] = [
∑
k

uknγk + v∗knγ
†
k, H]

=
∑
k

Ekuknγk − Ekv∗knγ
†
k . (B.40)

Comparing the terms with γk and γ†k leads to the following equations

Ekukn =
∑
j

tnjukj + ∆njvkj (B.41)

−Ekv∗kn =
∑
j

tnjv
∗
kj + ∆nju

∗
kj . (B.42)

This yields the condition for the back transformation

Ek~u = ¯̄T~u+ ¯̄∆~v (B.43)

Ek~v = − ¯̄T~v − ¯̄∆~u , (B.44)

such that we have the same condition as for the transformation.

B.7 Closed Boundary condition with general transformation
For the closed boundary condition the Hamiltonian reads as

H = −t
(

N∑
n=1

1− 2n̂n
)
− J

(
N−1∑
n=1

((
ĉ†nĉn+1 + ĉn+1ĉn + h.c.

)
− P̂

(
ĉ†N ĉ1 + ĉ1ĉN + h.c.

)))
(B.45)

Here is P̂ = ∏N
m=1(1− 2n̂m).

The total Hamiltonian is not quadratic and can not be diagonalized in total. But since
the parity operator P̂ is +1 in the even parity subspace and −1 in the odd parity
subspace, the Hamiltonians of the odd and even subspace are quadratic and can be
diagonalized

H± = P̂±(−t)
(

N∑
n=1

1− 2n̂n
)
− J

(
N−1∑
n=1

((
ĉ†nĉn+1 + ĉn+1ĉn + h.c.

)
∓
(
ĉ†N ĉ1 + ĉ1ĉN + h.c.

)))
P̂±

= P̂±

∑
i,j

[
tij â

†
i âj + 1

2∆ij â
†
i â
†
j + 1

2∆ij âj âi

]
−Nt

 P̂± (B.46)
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With the following matrices

¯̄T± =



2t −J 0 ... ±J
−J 2t −J 0 ...
0 −J 2t −J 0 ...
... . . . . . . . . . . . . . . .
±J



¯̄∆± =



0 −J 0 ... ∓J
J 0 −J 0 ...
0 J 0 −J 0 ...
... . . . . . . . . . . . . . . .
±J


we can determine the transformation by

E± ~ψ± = 2


t 0 0 ... ±J
−J t 0 0 ...
0 −J t 0 0 ...
... . . . . . . . . . . . . . . .


︸ ︷︷ ︸

A±

~φ± (B.47)

E±~φ± = 2



t −J 0 ...
0 t −J 0 ...
0 0 t −J 0 ...
... . . . . . . . . . . . . . . .
±J


︸ ︷︷ ︸

B±

~ψ± (B.48)

(E±)2 ~ψ = A±B± ~ψ (B.49)
(E±)2~φ = B±A±~φ (B.50)

With

A±B± = 4



t2 + J2 −Jt 0 ... ±Jt
−Jt t2 + J2 −Jt 0 ...

0 −Jt t2 + J2 −Jt 0 ...
... . . . . . . . . . . . . . . .
±Jt

 = B±A± (B.51)

Thus the equation for the transformation is for the even parity subspace

E2ψn = (t2 + J2)ψn − Jt(ψn−1 + ψn+1) (B.52)
E2φn = (t2 + J2)φn − Jt(φn−1 + φn+1) (B.53)
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With the boundary condition ψN+1 = −ψ1, ψ0 = −ψN and φN+1 = −φ1, φ0 = −φN .
And the equation for the transformation of the odd parity subspace:

E2ψn = 4(t2 + J2)ψn − 4Jt(ψn−1 + ψn+1) (B.54)
E2φn = 4(t2 + J2)φn − 4Jt(φn−1 + φn+1) (B.55)

With the boundary condition ψN+1 = ψ1, ψ0 = ψN and φN+1 = φ1, φ0 = φN .
Using the Ansatz

φn ∝ eikn (B.56)
ψn ∝ eikn (B.57)

we find that
1
4E

2 = (t2 + J2)− Jt(e−ik + eik)

→ 1
4E

2 = t2 + J2 − 2Jt cos(k) . (B.58)

And from the boundary conditions it follows that

eik(N+1) = ∓eik

1 = ∓eikN

→ k =


(2l−1)π
N

H+

2lπ
N

H−
. (B.59)

With l = 0, 1, 2, 3, ..., N − 1 (By shifting l′ = N/2 − l one obtains the same condition
for k as derived before).
Moreover the following condition has to be fullfilled (which determines the phase)

E~ψ = A~φ

→ Eψn = 2tφn − 2Jφn−1

Eψn =
(
2t− 2Je−ik

)
φn (B.60)

E~φ = B~ψ

→ Eφn = 2tψn − 2Jψn+1

Eφn =
(
2t− 2Jeik

)
ψn (B.61)
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Inserting E yields

ψn = t− Je−ik√
t2 + J2 − 2Jt cos(k)

φn

ψn = t− J cos(k)− J sin(k)√
(t− Jeik)(t− Je−ik)

φn

ψn =
(
ξk
Ek
− i∆k

Ek

)
φn

ψn = e−iθkφn (B.62)

φn = t− Jeik√
t2 + J2 − 2Jt cos(k)

ψn

φn = eiθkψn . (B.63)

With ξk = 2(t− J cos(k)) and ∆k = 2J sin(k).
Thus the transformation can be expressed as

uln = cos(θk/2)eikln (B.64)
vln = e−i

π
2 sin(θk/2)eikln . (B.65)

By multiplying both solution φn and ψn with a phase of eiπ4 (does not change the
relation between them, thus all above equations are still valid) one comes to the result
of

uln = ei
π
4 cos(θk/2)eikln (B.66)

vln = e−i
π
4 sin(θk/2)eikln . (B.67)

Normalizing ∑n |un|2 + |vn|2 leads to an additional factor of
√

1/N , such that the full
transformation can be expressed as (which is the same as the Fourier transformation
and the Bogoliubov transformation from the chapter before)

γk = 1√
N

∑
n

e−i
π
4 eikln cos(θk/2)ĉn + e+iπ4 eikln sin(θk/2)ĉ†n . (B.68)

With the condition for the even parity subspace that kl = (2l − 1) π
N
, and kl = (2l) π

N

for the odd parity subspace (as derived before).

B.8 Deriving the single particle spectrum and the condition
for the k-values for the open chain

The two equations for the transformation are

→E

2tψn = φn − λφn−1 (B.69)

→E

2tφn = ψn − λψn+1 . (B.70)
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Inserting the Ansatz of

ψn ∝ sin(k(N + 1− n)) (B.71)
φn ∝ sin(kn) (B.72)

leads for φn for 1 ≤ n ≤ N − 1 to

sin(kn)− λ sin(k(n− 1)) = −E2t sin(k(N + 1− n))(
1− λ cos(k)− E

2t cos(k(N + 1))
)

sin(kn) = −
(
λ sin(k) + E

2t sin(k(N + 1))
)

cos(kn)

→ 1− λ cos(k)− E

2t cos(k(N + 1)) = 0 (B.73)

→ λ sin(k) + E

2t sin(k(N + 1)) = 0 . (B.74)

By combining the last two equations one can get two different conditions

− tan(k(N + 1)) = λ sin(k)
1− λ cos(k) (B.75)

1 + λ2 − 2λ cos(k) =
(
E

2t

)2
. (B.76)

Inserting the Ansatz for ψn for 2 ≤ n ≤ N leads to

− sin(k(N + 1− n)) + λ sin(k(N + 1− n− 1)) = E

2t sin(kn)(
cos(k(N + 1))− λ cos(k(N))− E

2t

)
sin(kn) =

(
sin(k(N + 1))− λ sin(k(N))

)
cos(kn)

→ cos(k(N + 1))− λ cos(k(N))− E

2t = 0 (B.77)

→ sin(k(N + 1))− λ sin(k(N)) = 0 (B.78)

By multiplying (B.77) with cos(k(N + 1)) and (B.78) with sin(k(N + 1)) this yields

cos2(k(N + 1))
(
1− λ cos(k)

)
− λ sin(k(N + 1)) cos(k(N + 1)) sin(k) = E

2t cos(k(N + 1))

sin2(k(N + 1))
(
1− λ cos(k)

)
+ λ sin(k(N + 1)) cos(k(N + 1)) sin(k) = 0

→ 1− λ cos(k)− E

2t cos(k(N + 1)) = 0 . (B.79)

By multiplying (B.77) with sin(k(N + 1)) and (B.78) with − cos(k(N + 1)) this yields

sin(k(N + 1)) cos(k(N + 1))
(
1− λ cos(k)

)
− λ sin2(k(N + 1)) sin(k) = E

2t sin(k(N + 1))

− sin(k(N + 1)) cos(k(N + 1))(1− λ cos(k))− λ cos2(k(N + 1)) sin(k) = 0

→ E

2t sin(k(N + 1)) + λ sin(k) = 0 . (B.80)

Combining eq.B.79 with eq.B.80 leads again to the condition B.75.
The Boundary equation for n = 1 and n = N are automatically fulfilled by the con-
dition that φ0 = 0, ψN+1 = 0 and fulfilling eq.B.69 and eq.B.70 (these conditions
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combined results in the boundary equation).
The Boundary equation reads as

E

2t = sin(k)
sin(kN) . (B.81)

Additionally we want always positive energy, which is here not necessarily fulfilled. Thus
one can add an additional term into the Ansatz (note that all the previous calculations
are still valid with this additional term)

sk = sign

(
sin(k)

sin(kN)

)
(B.82)

φn ∝ sk sin(kn) (B.83)

→ E

2t = sk
sin(k)

sin(kN) ≥ 0 , (B.84)

to have always positive energy.

B.9 Localized state
The energy of these localized states are:

E = 2
√
t2 + J2 + 2tJ cos(iq) = 2

√
t2 + J2 + 2tJ cosh(q) (B.85)

And have to fulfill the condition

− tan((N + 1)iq) = λ sin(iq)
1− λ cos(iq)

− tanh(q) = λ sinh(q)
1− λ cosh(q)

coth((N + 1)q) = λ cosh(q)− 1
λ sinh(q)

λ cosh(q) = 1 + λ sinh(q) + λ sinh(q) (coth((N + 1)q)− 1)
λ

2
(
eq + e−q

)
= 1 + λ

2
(
eq − e−q

)
+ λ sinh(q)

(
e(N+1)q + e−(N+1)q

e(N+1)q − e−(N+1)q − 1
)

λe−q = 1 + λ

2
(
eq − e−q

)e(N+1)q + e−(N+1)q −
(
e(N+1)q − e−(N+1)q

)
e(N+1)q − e−(N+1)q


λe−q = 1 + λ

2
(
eq − e−q

)( e−q(N+1)

e(N+1)q − e−(N+1)q

)

λe−q = 1 + λ
(
eq − e−q

)
e−2q(N+1)

( 1
1− e−2q(N+1)

)
. (B.86)
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Expansion in the limit of Nq >> 1 to first order:

λe−q = 1 + λ
(
eq − e−q

)
e−2q(N+1)

e−q = 1
λ

+ ε

eq = 1
1/λ+ ε

= λ

1 + λε
≈ λ(1− λε)

→ λ( 1
λ

+ ε) ≈ 1 + λ
(
λ− λ2ε− 1

λ
− ε

)(1
λ

+ ε
)2(N+1)

ε ≈
(
λ− λ2ε− 1

λ
− ε

)(1
λ

+ ε
)2(N+1)

ε ≈
(
λ2 − 1
λ
− ε(1 + λ2)

)((1
λ

)2(N+1)
+ 2(N + 1)

λ2N+1 ε

)

→ ε = λ2 − 1
λ

(1
λ

)2(N+1)
+ λ2 − 1

λ

2(N + 1)ε
λ2N+1 − ε(1 + λ2)

(1
λ

)2(N+1)

ε ≈
(
λ2 − 1
λ

)
1

λ2(N+1) + λ2 + 1− 2(λ2 − 1)(N + 1) (B.87)

Here higher order (∝ ε2) were neglected.
In the case of

(λ)2(N+1) >> λ2 + 1− 2(λ2 − 1)(N + 1)

→ ε ≈ λ2 − 1
λ

( 1
λ2 )N+1 (B.88)

This is true in the regime of λ > 1, where the localized state exists (for λ < 1 no
imaginary solution in the condition for the k-values exists). Thus

→
(
E

2t

)2
= 1 + λ2 − λ( 1

λ
+ ε+ 1

1/λ+ ε
)

≈ 1 + λ2 − λ( 1
λ

+ ε+ λ− λ2ε)

= ελ(λ2 − 1) (B.89)

B.10 Wave function of the localized state

φn ∝ sinh(qn) (B.90)
ψn ∝ sinh(q(N + 1− n)) (B.91)

The normalization constant can be calculated by

∑
n

(|vn|2 + |un|2) =
∑
n

1
4
(
φ2
n + ψ2

n − 2ψnφn + ψ2
n + φ2

n + 2φnψn
)

=
∑
n

1
2
(
φ2
n + ψ2

n

)
=
∑
n

φ2
n , (B.92)
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since ∑n φ
2
n = ∑

n ψ
2
n.

∑
n

sinh2(nq) =
N∑
n=0

1
4
(
e2nq + e−2nq − 2

)
= 1

4

(
e2q(N+1) − 1
e2q − 1 + 1− e−2q(N+1)

1− e−2q − 2(N + 1)
)

→ 1∑
n sinh2(nq)

= 4 1
e2q(N+1)−1
e2q−1 + 1−e−2q(N+1)

1−e−2q − 2(N + 1)

≈ 1
e2q(N+1)−1
e2q−1 − 1

e2q−1 + 1
1−e−2q − 2(N + 1)

≈ 4 e
2q − 1

e2q(N+1)

≈ 4 λ2 − 1
(λ2)N+1

→ ψn = 2
√
λ2 − 1
λN+1 sinh(q(N + 1− n)) ≈

√
λ2 − 1e−qn (B.93)

→ φn = 2
√
λ2 − 1
λN+1 sinh(qn) ≈

√
λ2 − 1e−q(N+1−n) (B.94)

B.11 Normalization for the transformation of the open chain
With

φkn = ukn − vkn ∝ sk sin(kn)
ψkn = ukn + vkn ∝ sin(k(N + 1− n))

→ vkn = 1
2 (c1 sin(k(N + 1− n))− c2sk sin(kn)) (B.95)

→ ukn = 1
2 (c1 sin(k(N + 1− n)) + c2sk sin(kn)) (B.96)

From the normalization condition we have∑
n

|φn|2 = 1 =
∑
n

|ψn|2

∑
n

|φn|2 =
∑
n

|c1 sin(kn)|2 = c2
1
∑
n

sin2(kn) = c2
1
1
2

(
N − sin(kN) cos(k(N + 1))

sin(k)

)
∑
n

|ψn|2 = c2
2

N∑
n=1

sin2(k(N + 1− n)) = c2
2

1∑
n=N

sin2(k(N + 1− n)) = c2
2

N∑
n=1

sin2(kn)

→ c2
1 = c2

2 = 2
N − sin(kN) cos(k(N+1))

sin(k)

. (B.97)

Assuming that k is real (for imaginary k see B.10).

B.12 Majorana representation
To derive the zero energy mode in the thermodynamic limit one can introduce the
Majorana modes:

ân = ĉn + ĉ†n (B.98)

b̂n = ĉn − ĉ†n
i

(B.99)
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With {ân, b̂j} = 2δnj and â2 = b̂2 = 1.
And the reverse transformation:

ĉn = ân + ib̂n
2 (B.100)

ĉ†n = ân − ib̂n
2 (B.101)

Thus one can transform the hopping as

ĉ†n+1ĉn = 1
4
(
ân+1ân + b̂n+1b̂n + iân+1b̂n − ib̂n+1ân

)
(B.102)

→ ĉ†n+1ĉn + ĉ†nĉn+1 = i

2
(
ânb̂n+1 − b̂nân+1

)
, (B.103)

And the pairing term to

ĉn+1ĉn = 1
4
(
ân+1ân − b̂n+1b̂n + iân+1b̂n + ib̂n+1ân

)
(B.104)

→ ĉn+1ĉn + ĉ†nĉ
†
n+1 = i

2
(
ân+1b̂n + b̂n+1ân

)
. (B.105)

The kinetic term transforms to

2n̂n = 1 + iânb̂n . (B.106)

Hence the total Hamiltonian reads with the Majorana operators

H = −J
N−1∑
n=1

(
ĉ†nĉn+1 + ĉn+1ĉn + h.c.

)
− t

(
N∑
n=1

1− 2n̂n
)

= −iJ
N−1∑
n=1

ân+1b̂n + it
N∑
n

ânb̂n (B.107)

To diagonalize define the following transformation:

ân =
∑
m

fnmαm (B.108)

b̂n =
∑
m

gnmβm . (B.109)

Here α and β are also Majorana operators. Due to the properties of ân and b̂n the
transformation matrix fnm and gnm has to be real and normalized to

1 =
∑
m

f 2
nm =

∑
m

g2
nm . (B.110)

The diagonalized Hamiltonian reads

H = i

2
∑
m

Emαmβm

= −iJ
N−1∑
n=1

∑
m,l

fn+1,mαmgn,lβl + it
N∑
n=1

∑
m,l

fn,mgn,lαmβl . (B.111)
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As the transformation has to diagonalize the Hamiltonian, all the terms with m 6= l
have to be zero such that:

1
2
∑
m

Emαmβm = t
N∑
n=1

∑
m

fn,mgn,mαmβm − J
N−1∑
n=1

fn+1,mgn,mαmβm

→ Em = 2t
N∑
n=1

fn,mgn,mαmβm − 2J
N−1∑
n=1

fn+1,mgn,mαmβm . (B.112)

Since we want to focus here on the zero mode (Majorana mode) with zero energy, one
can set Em = 0 for this mode as an Ansatz. Hence one arrives at the condition

2t
N∑
n=1

fn,mgn,m = 2J
N−1∑
n=1

fn+1,mgn,m . (B.113)

If one assumes fn,m = fn1,m and gn,m = gn1,m:

t
N∑
n=1

(f1g1)n = Jf1

N−1∑
n=1

(f1g1)n (B.114)

(B.115)

If one further assumes that the prefactors have the form f1 = 1/g1 we have

Nt = (N − 1)Jf1

→ f1 = N

N − 1
t

J
(B.116)

fn = en ln Nt
(N−1)J (B.117)

Since one has also a normalizing condition:

1 =
∑
m

f 2
n,m (B.118)

1 = f 2
n,m0 +

∑
m 6=m0

f 2
n,m︸ ︷︷ ︸

≥0

1 = en ln Nt
(N−1)J +

∑
m6=m0

f 2
n,m︸ ︷︷ ︸

≥0

=
(

Nt

(N − 1)J

)n
+

∑
m6=m0

f 2
n,m︸ ︷︷ ︸

≥0

(B.119)

Here the zero mode has the notation m0.
One can see from the last condition the zero mode can only exists if(

Nt

(N − 1)J

)n
≤ 1

→
(

Nt

(N − 1)J

)N
≤ 1 (B.120)
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Thus for N →∞ we have
t

J
≤ 1 y (B.121)

which is the condition for the existence of the zero mode (for N →∞).

C Lindblad for the closed chain

C.1 Delta functions
We have

1
N

∑
n

eiπ/N(k1−k2)n =


1 k1 = k2

eiπ/N(k1−k2) 1−eiπ(k1−k2)

1−eiπ/N(k1−k2) = 0 k1 − k2 = even

eiπ/N(k1−k2) 1−eiπ(k1−k2)

1−eiπ/N(k1−k2) = eiπ/N(k1−k2) 2
1−eiπ/N(k1−k2) k1 − k2 = odd

(C.1)

If k1 and k2 are both even or both odd the difference or sum has always to be even,
hence the third case for k1 − k2 = odd drops out.

C.2 Global coupling
One can define the Fourier transform of the bath correlator

Γ(ω) =
∫ t

t0
dt
′
eiω(t−t′ )F (t− t′) (C.2)

Γ∗(ω) =
∫ t

t0
dt
′
e−iω(t−t′ )F (t′ − t) (C.3)
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Using the Rotating Wave Approximation will lead for the first two parts of the master
equation (where only one subspace is involved):

dρs
dt

= −Γ(0)
N − 2

∑
k1

(
u2
k1 − v2

k1

)
γ†k1γk1

N − 2
∑
k2

(
u2
k2 − v2

k2

)
γ†k2γk2

 ρs
+ Γ(0)

N − 2
∑
k1

(
u2
k1 − v2

k1

)
γ†k1γk1

 ρs
N − 2

∑
k2

(
u2
k2 − v2

k2

)
γ†k2γk2


+ Γ∗(0)

N − 2
∑
k1

(
u2
k1 − v2

k1

)
γ†k1γk1

 ρs
N − 2

∑
k2

(
u2
k2 − v2

k2

)
γ†k2γk2


− Γ∗(0)

N − 2
∑
k1

(
u2
k1 − v2

k1

)
γ†k1γk1

N − 2
∑
k2

(
u2
k1 − v2

k2

)
γ†k2γk2

 ρs
−
∑
k1,k2

Γ(2Ek1)δEk1,Ek24uk1v−k1uk2v−k2
(
γ†k1γ

†
−k1

)
(γ−k2γk2) ρs

+
∑
k1,k2

Γ(2Ek1)δEk1,Ek24uk1v−k1uk2v−k2 (γ−k2γk2) ρs
(
γ†k1γ

†
−k1

)
+
∑
k1,k2

Γ∗(2Ek1)δEk1,Ek24uk1v−k1uk2v−k2 (γ−k2γk2) ρs
(
γ†k1γ

†
−k1

)
−
∑
k1,k2

Γ∗(2Ek1)δEk1,Ek24uk1v−k1uk2v−k2ρs
(
γ†k1γ

†
−k1

)
(γ−k2γk2)

−
∑
k1,k2

Γ(−2Ek1)δEk1,Ek24uk1v−k1uk2v−k2 (γ−k2γk2)
(
γ†k1γ

†
−k1

)
ρs

+
∑
k1,k2

Γ(−2Ek1)δEk1,Ek24uk1v−k1uk2v−k2
(
γ†k1γ

†
−k1

)
ρs (γ−k2γk2)

+
∑
k1,k2

Γ∗(−2Ek1)δEk1,Ek24uk1v−k1uk2v−k2
(
γ†k1γ

†
−k1

)
ρs (γ−k2γk2)

−
∑
k1,k2

Γ∗(−2Ek1)δEk1,Ek24uk1v−k1uk2v−k2ρs (γ−k2γk2)
(
γ†k1γ

†
−k1

)
(C.4)

Note that the projection operators on the two parity subspaces were omitted for sim-
plification (e.g. γk1γk2 ∼ P̂±γk1γk2P̂

±).
One can divide these equation into the real part with κ(ω) = Γ(ω) + Γ∗(ω) and all
Lamb-shift terms with 2iS(ω) = Γ(ω)− Γ∗(ω). Such that:

Γ(ω)[A,Bρs] + Γ∗(ω)[ρsA,B] = −κ(ω)
(
BρsA−

1
2{AB, ρs}

)
+ iS[AB, ρs] (C.5)

Neglecting the Lamb shift terms, to obtain only the dissipative part, leads to:

dρs
dt

= 4κ(0)
∑
k1,k2

(u2
k1 − v2

k1)(u2
k2 − v2

k2)
(
γ†k1γk1ρsγ

†
k2γk2 −

1
2
{
γ†k1γk1γ

†
k2γk2, ρs

})

+ 4
∑
k1,k2

δEk1,Ek2κ(2Ek1)4uk1v−k1uk2v−k2

(
γ−k1γk1ρsγ

†
k2γ
†
−k2 −

1
2
{
γ†k2γ

†
k2γ−k1γk1, ρs

})

+ 4
∑
k1,k2

δEk1,Ek2κ(−2Ek1)4uk1v−k1uk2v−k2

(
γ†k1γ−k1ρsγ−k2γk2 −

1
2
{
γ−k2γk2γ

†
k1γ
†
−k1, ρs

})
(C.6)
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With u2
k − v2

k = ξk/Ek and ukvk = ∆k/2Ek.
The last part from the master equation can be transformed in the same way as before,
but due to the rotating wave approximation and the fact that the even and odd parity
subspace have different single particle spectrum, the only term left, is the one with
ω = 0:

dρs
dt

= Γ(0)

2
∑
k+

1

(
u2
k1 − v2

k1

)
P+γ†k1γk1P

+

 ρs
2

∑
k−2

(
u2
k2 − v2

k2

)
P−γ†k2γk2P

−


+ Γ∗(0)

2
∑
k+

1

(
u2
k1 − v2

k1

)
P+γ†k1γk1P

+

 ρs
2

∑
k−2

(
u2
k2 − v2

k2

)
P−γ†k2γk2P

−


+ Γ(0)

2
∑
k−1

(
u2
k1 − v2

k1

)
P−γ†k1γk1P

−

 ρs
2

∑
k−2

(
u2
k2 − v2

k2

)
P+γ†k2γk2P

+


+ Γ∗(0)

2
∑
k+

1

(
u2
k1 − v2

k1

)
P−γ†k1γk1P

−

 ρs
2

∑
k−2

(
u2
k2 − v2

k2

)
P+γ†k2γk2P

+

)

= κ0
∑

k1+,k−2

ξk1ξk2

Ek1Ek2
P+γ†k1γk1P

+ρsP
−γ†k2γk2P

−

+ κ0
∑

k1−,k+
2

ξk1ξk2

Ek1Ek2
P−γ†k1γk1P

−ρsP
+γ†k2γk2P

+ (C.7)

C.3 Diagonalization of the first excited subspace
To find the solution of this set of equation

t
[
f(n+1,m) + f(n−1,m) + f(n,m+1) + f(n,m−1)

]
= εf(n,m) , (C.8)

for |n−m| > 1 and |N + n−m| < 1 whereas for n = m+ 1 we have

t
[
f(n+1,m) + f(n,m−1)

]
= εf(n,m) , (C.9)

or for n = m− 1 we have

t
[
f(n−1,m) + f(n,m+1)

]
= εf(n,m) , (C.10)

one can solve the problem connected to the tight binding model in the effective lattice
shown in Fig.3.8. Define the vertical direction of this effective lattice as x-direction
and the horizontal direction of the effective lattice as y-direction. As there are periodic
boundary conditions along x, we have Ψ(x) = Ψ(x+2N) and open boundary condition
(due to the loose ends) along y with Ψ(0) = Ψ(N) = 0. Hence with Ψ = fx,y |x, y〉 (x,y
define the position in the effective lattice) we have

fx,y =
√

2
N

sin
(
pi

N
ky
)
ei
pi
N
qx (C.11)

ε(k, q) = 2t (cos(π(k − q)/N) + cos(π(k + q)/N)) (C.12)
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using the usual Ansatz for the tight binding model.
To express the solution in the basis of the two domain walls has to project the position
|x, y〉 back to |n,m〉 with:

x =

n+m for n < m

n+m±N for n > m
(C.13)

y =

m− n for n < m

m− n+N for n > m
(C.14)

Hence the result in the basis of |n,m〉 is

fn,m =


√

2
N

sin( π
N
k(m− n))ei πN q(m+n) n < m

eiπ(k+q)
√

2
N

sin( π
N
k(m− n))ei πN q(m+n) n > m

ε(k, q) = 2t [cos (π(k − q)/N) + cos (π(k + q)/N)] (C.15)

C.4 Lindblad operator by Projection onto the eigenstates
For the Lindblad operator connecting the ground states with the excited subspace we
have

Â(4J + ε(k, q)) = (|u〉 〈u|+ |d〉 〈u|)
∑
i

σzi |k, q〉 〈k, q|

= (|u〉 〈u|+ |d〉 〈u|)
∑
i

σzi
∑
n,m

fn,m |n,m〉 〈k, q|

= (|u〉 〈u|+ |d〉 〈u|)
∑
n

(fn,n+1 |u〉+ fn+1,n |d〉) 〈k, q| , (C.16)

and with

∑
n

fn,n+1 =
√

2
N

sin
(
π

N
k
)∑

n

(
e
iπ
N
q(2n+1)

)
=
√

2 sin
(
π

N
k
)
δq,N∑

n

fn+1,n = −eiπ(k+N)√2 sin
(
π

N
k
)
δq,N (C.17)

we have

Â(4J + ε(k, q)) = 2 sin
(
πk

N

)
|gs〉 〈k,N | . (C.18)
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C.5 Local coupling
The Redfield equation for one subspace reads as (note that the projector operators are
neglected):

dρs
dt

= −
∫ t

t0
dt
′ ∑
n1,n2

Fn1,n2(t− t′)σzn1(t)σzn2(t′)ρs(t)

− Fn1,n2(t− t′)σzn2(t′)ρs(t)σzn1(t)
− Fn2,n1(t′ − t)σzn1(t)ρs(t)σzn2(t′)

+ Fn2,n1(t′ − t)ρs(t)σzn2(t′)σzn1(t)
 (C.19)

Under the Rotating Wave Approximation (or secular approximation) only the terms,
which rotate with the same frequency are taken into account (every other term refers
to fast oscillating terms and can be neglected). Thus one can define the Fourier trans-
formation of the correlation function of the bath to

Γn1,n2(ω) =
∫ t

t0
dt
′
eiω(t−t′ )Fn1,n2(t− t′) (C.20)

Γ∗n2,n1(ω) =
∫ t

t0
dt
′
e−iω(t−t′ )Fn2,n1(t′ − t) (C.21)

To have the whole dependence of the spin sites in one term one can define

Γω(k1 − k2, k3 − k4) = 1
N2

∑
n1,n2

Γn1,n2(ω)e−i πN (k1−k2)n1e−i
π
N

(k3−k4)n2 (C.22)

adding the n-dependent terms of σzn(t).
For local coupling one can assume that Fn1,n2 = c(t − t′)δn1,n2 , such that the bath
correlator is only nonzero at the same spin site (the bathes of different spin sites are
uncorrelated)

Γω(k1 − k2, k3 − k4) = 1
N2

∑
n1,n2

Γn1,n2(ω)e−i πN (k1−k2)n1e−i
π
N

(k3−k4)n2

= 1
N2

∑
n1,n2

c(ω) · δn1,n2e
−i π

N
(k1−k2)n1e−i

π
N

(k3−k4)n2

= 1
N2

∑
n1

c(ω) · e−i πN (k1−k2+k3−k4)n1

= 1
N
c(ω) · δk1−k2,k4−k3 (C.23)
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Such that the master equation can be expressed as (omitting the projection operators
for simplification e.g. γk1γk2 ∼ P̂±γk1γk2P̂

±))

L̂±(ρs) =
(

2
N

∑
k1,k2

Ak1,k2c(0)δk1−k2,0δEk1−Ek2,0[γ†k1γk2, ρs]

+ 2
N

∑
k1,k2

uk1vk2c(0)δk1+k2,0δEk1+Ek2,0[γ†k1γ
†
k2 + γk2γk1, ρs]

+ 4
N

∑
k1,k2k3,k4

Ak1,k2Ak3,k4c((Ek1 − Ek2))δk1−k2,k4−k3δEk1−Ek2,Ek4−Ek3 [γ†k1γk2, γ
†
k3γk4ρs]

+ 4
∑

k1,k2k3,k4

Ak1,k2uk3vk4c(Ek1 − Ek2)δk1−k2,−k3−k4δEk1−Ek2,−Ek3−Ek4 [γ†k1γk2, γ
†
k3γ
†
k4ρs]

+ 4
∑

k1,k2k3,k4

Ak1,k2uk3vk4c(Ek1 − Ek2)δk1−k2,k3+k4δEk1−Ek2,Ek3Ek4 [γ†k1γk2, γk4γk3ρs]

+ 4
N

∑
k1,k2k3,k4

uk1vk2Ak3,k4c(Ek1 + Ek2)δk1+k2,k4−k3δEk1+Ek2,−Ek3+Ek4 [γ†k1γ
†
k2, γ

†
k3γk4ρs]

+ 4
N

∑
k1,k2k3,k4

uk1vk2uk3vk4c(Ek1 + Ek2)δk1+k2,−k3−k4δEk1+Ek2,−Ek3−Ek4 [γ†k1γ
†
k2, γ

†
k3γ
†
k4ρs]

+ 4
N

∑
k1,k2k3,k4

uk1vk2uk3vk4c(Ek1 + Ek2)δk1+k2,k3+k4δEk1+Ek2,Ek3+Ek4 [γ†k1γ
†
k2, γk4γk3ρs]

+ 4
N

∑
k1,k2k3,k4

uk1vk2uk3vk4c(−Ek1 − Ek2)δ−k1−k2,k3+k4δ−Ek1−Ek2,Ek3+Ek4 [γk2γk1, γk4γk3ρs]

+ 4
N

∑
k1,k2k3,k4

uk1vk2uk3vk4c(−Ek1 − Ek2)δ−k1−k2,−k3−k4δ−Ek1−Ek2,−Ek3−Ek4 [γk2γk1, γ
†
k3γ
†
k4ρs]

+ 4
N

∑
k1,k2k3,k4

uk1vk2Ak1,k2c(−Ek1 − Ek2)δ−k1−k2,k4−k3δ−Ek1−Ek2,−Ek3+Ek4 [γk2γk1, γ
†
k3γk4ρs]
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+ 2
N

∑
k1,k2

Ak1,k2c
∗(0)δk1−k2,0δEk1−Ek2,0[ρs, γ†k1γk2]

+ 2
N

∑
k1,k2

uk1vk2c
∗(0)δk1+k2,0δEk1+Ek2,0[ρs, γ†k1γ

†
k2 + γk2γk1]

+ 4
N

∑
k1,k2k3,k4

Ak1,k2Ak3,k4c
∗(Ek1 − Ek2)δk1−k2,k4−k3δEk1−Ek2,Ek4−Ek3 [ρsγ†k1γk2, γ

†
k3γk4]

+ 4
N

∑
k1,k2k3,k4

Ak1,k2uk3vk4c
∗(Ek1 − Ek2)δk1−k2,−k3−k4δEk1−Ek2,−Ek3−Ek4 [ρsγ†k1γk2, γ

†
k3γ
†
k4]

+ 4
N

∑
k1,k2k3,k4

Ak1,k2uk3vk4c
∗(Ek1 − Ek2)δk1−k2,k3+k4δEk1−Ek2,Ek3Ek4 [ρsγ†k1γk2, γk4γk3]

+ 4
N

∑
k1,k2k3,k4

uk1vk2Ak3,k4c
∗(Ek1 + Ek2)δk1+k2,k4−k3δEk1+Ek2,−Ek3+Ek4 [ρsγ†k1γ

†
k2, γ

†
k3γk4]

+ 4
N

∑
k1,k2k3,k4

uk1vk2uk3vk4c
∗(Ek1 + Ek2)δk1+k2,−k3−k4δEk1+Ek2,−Ek3−Ek4 [ρsγ†k1γ

†
k2, γ

†
k3γ
†
k4]

+ 4
N

∑
k1,k2k3,k4

uk1vk2uk3vk4c
∗(Ek1 + Ek2)δk1+k2,k3+k4δEk1+Ek2,Ek3+Ek4 [ρsγ†k1γ

†
k2, γk4γk3]

+ 4
N

∑
k1,k2k3,k4

uk1vk2uk3vk4c
∗
−k1−k2(−2(Ek1 + Ek2))δ−k1−k2,k3+k4δ−Ek1−Ek2,Ek3+Ek4 [ρsγk2γk1, γk4γk3]

+ 4
N

∑
k1,k2k3,k4

uk1vk2uk3vk4c
∗(−Ek1 − Ek2)δ−k1−k2,−k3−k4δ−Ek1−Ek2,−Ek3−Ek4 [ρsγk2γk1, γ

†
k3γ
†
k4]

+ 4
N

∑
k1,k2k3,k4

uk1vk2Ak1,k2c
∗(−Ek1 − Ek2)δ−k1−k2,k4−k3δ−Ek1−Ek2,−Ek3+Ek4 [ρsγk2γk1, γ

†
k3γk4]

)
(C.24)

With Ak1,k2 = (vk1vk2 − uk1uk2).
Some terms contains delta-functions, which cannot be fulfilled e.g. δk1+k2,0δEk1+Ek2,0:

k1 = −k2 (C.25)
Ek1 = −Ek2 (C.26)

One can see that this cannot be fulfilled with the given energy relation for t > J and
t < J (only at t = J with E0 = 0).
Besides the cases δk1+k2,−k3−k4δEk1+Ek2,−Ek3−Ek4 and δ−k1−k2,k3+k4δ−Ek1−Ek2,Ek3+Ek4 can
also be never fulfilled as Ek > 0 for all k. Besides there is also a non-trivial case that
drops out

k1 − k2 = k3 + k4 (C.27)
Ek1 − Ek2 = Ek3 + Ek4 , (C.28)

which is also impossible to fulfill as it can be seen in Fig.17.
All the rest can be fulfilled (depending on t, J , N). Dropping out these terms simplify
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Figure 17: The function f(t/J) = max∆k
(maxk1(Ek1−Ek1−∆k

)−mink3(Ek3 +E∆k−k3))
with ∆k = k1 − k2 plotted over t/J . The function f is always smaller than zero for
t > J and t < J , meaning there cannot be a solution for δk1−k2,k3+k4δEk1−Ek2,Ek3+Ek4

as Ek1 − Ek2 < Ek3 + Ek4 under the condition that k1 − k2 = k3 + k4. Only at the
critical point t = J there can be a solution with Ek − E0 = Ek + E0 (E0 = 0 at the
critical point), but for t < J and t > J all terms containing these delta-functions can
be dropped.

the master equation to:

L̂(ρs) = −
(

2
N

∑
k1

Ak1,k2c(0)[γ†k1γk1, ρs]

+ 4
N

∑
k1,k2k3,k4

Ak1,k2Ak3,k4c(Ek1 − Ek2)δk1−k2,k4−k3δEk1−Ek2,Ek4−Ek3 [γ†k1γk2, γ
†
k3γk4ρs]

+ 4
N

∑
k1,k2k3,k4

uk1vk2uk3vk4c(Ek1 + Ek2)δk1+k2,k3+k4δEk1+Ek2,Ek3+Ek4 [γ†k1γ
†
k2, γk4γk3ρs]

+ 4
N

∑
k1,k2k3,k4

uk1vk2uk3vk4c(−Ek1 − Ek2)δ−k1−k2,−k3−k4δ−Ek1−Ek2,−Ek3−Ek4 [γk2γk1, γ
†
k3γ
†
k4ρs]

+ 4
N

∑
k1

Ak1,k1c
∗(0)[ρs, γ†k1γk1]

+ 4
N

∑
k1,k2k3,k4

Ak1,k2Ak3,k4c
∗(Ek1 − Ek2)δk1−k2,k4−k3δEk1−Ek2,Ek4−Ek3 [ρsγ†k1γk2, γ

†
k3γk4]

+ 4
N

∑
k1,k2k3,k4

uk1vk2uk3vk4c
∗(Ek1 + Ek2)δk1+k2,k3+k4δEk1+Ek2,Ek3+Ek4 [ρsγ†k1γ

†
k2, γk4γk3]

+ 4
N

∑
k1,k2k3,k4

uk1vk2uk3vk4c
∗(−Ek1 − Ek2))δ−k1−k2,−k3−k4δ−Ek1−Ek2,−Ek3−Ek4 [ρsγk2γk1, γ

†
k3γ
†
k4]

(C.29)
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One can see that there are several terms which have the following structure:

c[A,Bρs] + c∗[ρsA,B] = c(ABρs −BρsA) + c∗(ρsAB −BρsA)
= −(c+ c∗)BρsA+ cABρs + c∗ρsAB

= − (c+ c∗)︸ ︷︷ ︸
κ

(
BρsA−

1
2(ABρs + ρsAB)

)
+ 1

2(c− c∗)︸ ︷︷ ︸
iS

(ABρs − ρsAB)

= −κ
(
BρsA−

1
2{AB, ρs}

)
+ iS[AB, ρs] (C.30)

Where κ is the real part of c and S the imaginary part of c.
Thus the total equation can be expressed in Lindblad form as (neglecting the Lamb
shift from the imaginary part):

L̂(ρs) = 4
N

∑
k1,k2,k3,k4

Ak1,k2Ak3,k4δk1−k2,k4−k3δEk1−Ek2,Ek4−Ek3κ(Ek1 − Ek2)
(
γ†k3γk4ρsγ

†
k1γk2 −

1
2{γ

†
k1γk2γ

†
k3γk4, ρs}

)
+ 4
N

∑
k1,k2,k3,k4

uk1vk2uk3vk4δk1+k2,k4+k3δEk1+Ek2,Ek4+Ek3κ(Ek1 + Ek2)
(
γk4γk3ρsγ

†
k1γ
†
k2 −

1
2{γ

†
k1γ
†
k2γk4γk3, ρs}

)
+ 4
N

∑
k1,k2,k3,k4

uk1vk2uk3vk4δ−k1−k2,−k4−k3δ−Ek1−Ek2,−Ek4−Ek3κ(−Ek1 − Ek2)
(
γ†k3γ

†
k4ρsγk2γk1 −

1
2{γk2γk1γ

†
k3γ
†
k4, ρs}

) (C.31)

The expression above will be defined as the Lindblad master operator L± for the
respective subspace (only the sum over the possible k-values are different for the two
subspaces).
The same can be done for the master equation part with mixing parity, leading to

L̂±∓(ρs) = 4
N

∑
k1−,k2−,k3+,k4+

Ak1,k2Ak3,k4δk1−k2,k4−k3δEk1−Ek2,Ek4−Ek3κ(Ek1 − Ek2)
(
P̂+γ†k3γk4P̂

+ρsP̂
−γ†k1γk2P̂

−
)

+ 4
N

∑
k1−,k2−,k3+,k4+

uk1vk2uk3vk4δk1+k2,k4+k3δEk1+Ek2,Ek4+Ek3κ(Ek1 + Ek2)
(
P̂+γk4γk3P̂

+ρsP̂
−γ†k1γ

†
k2P̂

−
)

+ 4
N

∑
k1−,k2−,k3+,k4+

uk1vk2uk3vk4δ−k1−k2,−k4−k3δ−Ek1−Ek2,−Ek4−Ek3κ(−Ek1 − Ek2)
(
P̂+γ†k3γ

†
k4P̂

+ρsP̂
−γk2γk1P̂

−
)

(C.32)
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C.6 Additional solutions for the delta functions for 10 spins
Every time there is a crossing in Fig.18 or Fig.19 there is a additional solution in the
Lindblad equation, e.g. at the point t/J = 1.5 (for N = 10), δk1−k2,k4−k3δEk1−Ek2,Ek3−Ek4

has additionally the solution k1 = 5, k2 = 3, k3 = 3 and k4 = 1, which leads to the
extra term in the Lindblad:

2
N

(u5u3 − v5v3)(u3u1 − v3v1)γ†3γ1ρsγ
†
5γ3 −

1
2{γ

†
5γ3γ

†
3γ1, ρs} (C.33)

As one can see this term only leads to an additional coupling and decay of matrix
elements with excitation with the k-values of the additional solution and thus do not
influence e.g. the decoherence of the ground states. Besides the influence of this single
term at the point t/J = 1.5 should be small due to the large number of other terms
in the Lindblad (∼ N2). All the other additional solution (at different t/J ratios) have
similar behavior and thus can be neglected for deriving a general solution for arbitrary
t/J and N .

Figure 18: Energy differences with the same difference ∆k = k1 − k2 for the even
parity subspace. Note that the possibilities with negative k lead to the same figure
with negative energy since Ek = E−k.
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Figure 19: Energy differences with the same difference ∆k = k1− k2 for the odd parity
subspace. Note that the possibilities with negative k lead to the same figure with
negative energy since Ek = E−k.
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D Lindblad for the closed chain
Inserting the time dependent interaction into the Redfield equation and using the
Rotating Wave Approximation leads to:

dρs
dt

= −
∑
n1,n2

2
∑
i,j

Γn1,n2(0)Ai,j,n1δEi,Ej [γ
†
i γj, ρs]

+ 2
∑
i,j

Γn1,n2(0)vi,n1uj,n1δEi,−Ej [γiγj, ρs]

+ 2
∑
i,j

Γn1,n2(0)v∗i,n1u
∗
j,n1δEi,−Ej [γ

†
jγ
†
i , ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 − Ej1)Ai1,j1,n1Ai2,j2,n2δEi1−Ej1,Ej2−Ei2 [γ†i1γj1, γ

†
i2γj2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 − Ej1)Ai1,j1,n1vi2,n2uj2,n2δEi1−Ej1,Ei2+Ej2 [γ†i1γj1, γi2γj2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 − Ej1)Ai1,j1,n1v

∗
i2,n2u

∗
j2,n2δEi1−Ej1,−Ei2−Ej2 [γ†i1γj1, γ

†
j2γ
†
i2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(−Ei1 − Ej1)vi1,n1uj1,n1Ai2,j2,n2δ−Ei1−Ej1,Ej2−Ei2 [γi1γj1, γ†i2γj2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(−Ei1 − Ej1)vi1,n1uj1,n1vi2,n2uj2,n2δ−Ei1−Ej1,Ej2+Ei2 [γi1γj1, γi2γj2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(−Ei1 − Ej1)vi1,n1uj1,n1v

∗
i2,n2u

∗
j2,n2δEi1+Ej1,Ej2+Ei2 [γi1γj1, γ†j2γ

†
i2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 + Ej1)v∗i1,n1u

∗
j1,n1Ai2,j2,n2δEi1+Ej1,Ej2−Ei2 [γ†j1γ

†
i1, γ

†
i2γj2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 + Ej1)v∗i1,n1u

∗
j1,n1vi2,n2uj2,n2δEi1+Ej1,Ej2+Ei2 [γ†j1γ

†
i1, γi2γj2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 + Ej1)v∗i1,n1u

∗
j1,n1v

∗
i2,n2u

∗
j2,n2δEi1+Ej1,−Ej2−Ei2 [γ†j1γ

†
i1, γ

†
j2γ
†
i2ρs]
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+ 2
∑
k,j

Γ∗n1,n2(0)Ai,j,n1δEi,Ej [ρs, γ
†
i γj]

+ 2
∑
i,j

Γn1,n2(0)vi,n1uj,n1δEi,−Ej [ρs, γiγj]

+ 2
∑
i,j

Γn1,n2(0)v∗i,n1u
∗
j,n1δEi,−Ej [ρs, γ

†
jγ
†
i ]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 − Ej1)Ai1,j1,n1Ai2,j2,n2δEi1−Ej1,Ej2−Ei2 [ρsγ†i1γj1, γ

†
i2γj2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(Ei1 − Ej1)Ai1,j1,n1vi2,n2uj2,n2δEi1−Ej1,Ei2+Ej2 [ρsγ†i1γj1, γi2γj2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(Ei1 − Ej1)Ai1,j1,n1v

∗
i2,n2u

∗
j2,n2δEi1−Ej1,−Ei2−Ej2 [ρsγ†i1γj1, γ

†
j2γ
†
i2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(−Ei1 − Ej1)vi1,n1uj1,n1Ai2,j2,n2δ−Ei1−Ej1,Ej2−Ei2 [ρsγi1γj1, γ†i2γj2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(−Ei1 − Ej1)vi1,n1uj1,n1vi2,n2uj2,n2δ−Ei1−Ej1,Ej2+Ei2 [ρsγi1γj1, γi2γj2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(−Ei1 − Ej1)vi1,n1uj1,n1v

∗
i2,n2u

∗
j2,n2δEi1+Ej1,Ej2+Ei2 [ρsγi1γj1, γ†j2γ

†
i2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(Ek1 + Ej1)v∗i1,n1u

∗
j1,n1Ai2,j2,n2δEi1+Ej1,Ej2−Ei2 [ρsγ†j1γ

†
i1, γ

†
i2γj2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(Ei1 + Ej1)v∗i1,n1u

∗
j1,n1vi2,n2uj2,n2δEi1+Ej1,Ej2+Ei2 [ρsγ†j1γ

†
i1, γi2γj2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(Ei1 + Ej1)v∗i1,n1u

∗
j1,n1v

∗
i2,n2u

∗
j2,n2δEi1+Ej1,−Ej2−Ei2 [ρsγ†j1γ

†
i1, γ

†
j2γ
†
i2]


(D.1)

with

Ai,j,n = vkjnv
∗
kin
− u∗kinukjn . (D.2)

As one can see some terms drop out due to the delta functions. Thus several terms like
the following can be dropped out:

δEi1+Ej1,−Ej2−Ei2 [γ†j1γ
†
i1, γ

†
j2γ
†
i2ρs] = [γ†0γ†0︸ ︷︷ ︸

0

, γ†0γ
†
0ρs] (D.3)



Appendix 114

as the |0〉 state is the only excitation with zero energy (for t < J).
Thus the total equation simplifies to:

dρs
dt

= −
∑
n1,n2

2
∑
i,j

Γn1,n2(0)Ai,j,n1δEi,Ej [γ
†
i γj, ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 − Ej1)Ai1,j1,n1Ai2,j2,n2δEi1−Ej1,Ej2−Ei2 [γ†i1γj1, γ

†
i2γj2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 − Ej1)Ai1,j1,n1vi2,n2uj2,n2δEi1−Ej1,Ei2+Ej2 [γ†i1γj1, γi2γj2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 − Ej1)Ai1,j1,n1v

∗
i2,n2u

∗
j2,n2δEi1−Ej1,−Ei2−Ej2 [γ†i1γj1, γ

†
j2γ
†
i2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(−Ei1 − Ej1)vi1,n1uj1,n1Ai2,j2,n2δ−Ei1−Ej1,Ej2−Ei2 [γi1γj1, γ†i2γj2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(−Ei1 − Ej1)vi1,n1uj1,n1v

∗
i2,n2u

∗
j2,n2δEi1+Ej1,Ej2+Ei2 [γi1γj1, γ†j2γ

†
i2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 + Ej1)v∗i1,n1u

∗
j1,n1Ai2,j2,n2δEi1+Ej1,Ej2−Ei2 [γ†j1γ

†
i1, γ

†
i2γj2ρs]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 + Ej1)v∗i1,n1u

∗
j1,n1vi2,n2uj2,n2δEi1+Ej1,Ej2+Ei2 [γ†j1γ

†
i1, γi2γj2ρs]

+ 2
∑
i,j

Γ∗n1,n2(0)Ai,j,n1δEi,Ej [ρs, γ
†
i γj]

+ 4
∑

i1,i2,j1,j2
Γn1,n2(Ei1 − Ej1)Ai1,j1,n1Ai2,j2,n2δEi1−Ej1,Ej2−Ei2 [ρsγ†i1γj1, γ

†
i2γj2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(Ei1 − Ej1)Ai1,j1,n1vi2,n2uj2,n2δEi1−Ej1,Ei2+Ej2 [ρsγ†i1γj1, γi2γj2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(Ei1 − Ej1)Ai1,j1,n1v

∗
i2,n2u

∗
j2,n2δEi1−Ej1,−Ei2−Ej2 [ρsγ†i1γj1, γ

†
j2γ
†
i2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(−Ei1 − Ej1)vi1,n1uj1,n1Ai2,j2,n2δ−Ei1−Ej1,Ej2−Ei2 [ρsγi1γj1, γ†i2γj2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(−Ei1 − Ej1)vi1,n1uj1,n1v

∗
i2,n2u

∗
j2,n2δEi1+Ej1,Ej2+Ei2 [ρsγi1γj1, γ†j2γ

†
i2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(Ei1 + Ej1)v∗i1,n1u

∗
j1,n1Ai2,j2,n2δEi1+Ej1,Ej2−Ei2 [ρsγ†j1γ

†
i1, γ

†
i2γj2]

+ 4
∑

i1,i2,j1,j2
Γ∗n1,n2(Ei1 + Ej1)v∗i1,n1u

∗
j1,n1vi2,n2uj2,n2δEi1+Ej1,Ej2+Ei2 [ρsγ†j1γ

†
i1, γi2γj2]


(D.4)

One can see that there are several terms, which have the following structure:

Γ[A,Bρs] + Γ∗[ρsA,B] = Γ(ABρs −BρsA) + Γ∗(ρsAB −BρsA)
= −(Γ + Γ∗)BρsA+ ΓABρs + Γ∗ρsAB

= − (Γ + Γ∗)︸ ︷︷ ︸
γ

(
BρsA−

1
2(ABρs + ρsAB)

)
+ 1

2(Γ− Γ∗)︸ ︷︷ ︸
iS

(ABρs − ρsAB)

= −γ
(
BρsA−

1
2{AB, ρs}

)
+ iS[AB, ρs] (D.5)
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Where γ is the real part of Γ and S the imaginary part of Γ.
Thus the total equation can be expressed in a Lindblad like form

dρs
dt

=
∑
n1,n2

− 4i
∑
i,j

Sn1,n2(0)Ai,j,n1δEi,Ej [γ
†
i γj, ρs]

+ 4
∑

i1,i2,j1,j2
Ai1,j1,n1Ai2,j2,n2δEi1−Ej1,Ej2−Ei2

− iSn1,n2(Ei1 − Ej1)[γ†i1γj1γ
†
i2γj2, ρs]

+ γn1,n2(Ei1 − Ej1)
(
γ†i2γj2ρsγ

†
i1γj1 −

1
2{γ

†
i1γj1γ

†
i2γj2, ρs}

)
+ 4

∑
i1,i2,j1,j2

Ai1,j1,n1uj2,n2vi2,n2δEi1−Ej1,Ei2+Ej2

− iSn1,n2(Ei1 − Ei2)[γ†i1γj1γi2γj2, ρs]

+ γn1,n2(Ei1 − Ej1)
(
γi2γj2ρsγ

†
i1γj1 −

1
2{γ

†
i1γj1γi2γj2, ρs}

)
+ 4

∑
i1,i2,j1,j2

Ai1,j1,n1u
∗
j2,n2v

∗
i2,n2δEi1−Ej1,−Ei2−Ej2

− iSn1,n2(Ei1 − Ej1)[γ†i1γj1γ
†
i2γ
†
j2, ρs]

+ γn1,n2(Ei1 − Ej1)
(
γ†j2γ

†
i2ρsγ

†
i1γj1 −

1
2{γ

†
i1γj1γ

†
j2γ
†
i2, ρs}

)
+ 4

∑
i1,i2,j1,j2

uj1,n1vi1,n2Ai2,j2,n2δEi1+Ej1,Ei2−Ej2

− iSn1,n2(−Ei1 − Ej1)[γi1γj1γ†i2γj2, ρs]

+ γn1,n2(−Ei1 − Ej1)
(
γ†i2γj2ρsγi1γj1 −

1
2{γi1γj1γ

†
i2γj2, ρs}

)
+ 4

∑
i1,i2,j1,j2

uj1vi1u
∗
j2v
∗
i2δEi1+Ej1,Ei2+Ej2

− iSn1,n2(−Ei1 − Ej1)[γi1γj1γ†j2γi2, ρs]

+ γn1,n2(−Ei1 − Ej1)
(
γ†j2γ

†
k2ρsγi1γj1 −

1
2{γi1γj1γ

†
j2γ
†
i2, ρs}

)
+ 4

∑
i1,i2,j1,j2

u∗j1,n1v
∗
i1,n1uj2,n2vi2,n2δEi1+Ej1,Ei2+Ej2

− iSn1,n2(Ei1 + Ej1)[γ†j1γ
†
i1γi2γj2, ρs]

+ γn1,n2(Ei1 + Ej1)
(
γi2γj2ρsγ

†
j1γ
†
i1 −

1
2{γ

†
j1γ
†
i1γi2γj2, ρs}

)
+ 4

∑
i1,i2,j1,j2

u∗j1,n1v
∗
i1,n1Ai2,j2,n2δEi1+Ej1,Ej2−Ei2

− iSn1,n2(Ei1 + Ej1)[γ†j1γ
†
i1γ
†
i2γj2, ρs]

+ γn1,n2(Ei1 + Ej1)
(
γ†i2γj2ρsγ

†
j1γ
†
i1 −

1
2{γ

†
j1γ
†
i1γ
†
i2γj2, ρs}

) , . (D.6)
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And by neglecting the Lamb shift terms the total Lindblad equation reads

dρs
dt

=
∑
n1,n2

4
∑

i1,i2,j1,j2
Ai1,j1,n1Ai2,j2,n2δEi1−Ej1,Ej2−Ei2κn1,n2(Ei1 − Ej1)
(
γ†i2γj2ρsγ

†
i1γj1 −

1
2{γ

†
i1γj1γ

†
i2γj2, ρs}

)
+ 4

∑
i1,i2,j1,j2

Ai1,j1,n1uj2,n2vi2,n2δEi1−Ej1,Ei2+Ej2κn1,n2(Ei1 − Ej1)
(
γi2γj2ρsγ

†
i1γj1 −

1
2{γ

†
i1γj1γi2γj2, ρs}

)
+ 4

∑
i1,i2,j1,j2

Ai1,j1,n1u
∗
j2,n2v

∗
i2,n2δEi1−Ej1,−Ei2−Ej2κn1,n2(Ei1 − Ej1)

(
γ†j2γ

†
i2ρsγ

†
i1γj1 −

1
2{γ

†
i1γj1γ

†
j2γ
†
i2, ρs}

)
+ 4

∑
i1,i2,j1,j2

uj1,n1vi1,n2Ai2,j2,n2δEi1+Ej1,Ei2−Ej2κn1,n2(−Ei1 − Ej1)
(
γ†i2γj2ρsγi1γj1 −

1
2{γi1γj1γ

†
i2γj2, ρs}

)
+ 4

∑
i1,i2,j1,j2

uj1,n1vi1,n1u
∗
j2,n2v

∗
i2,n2δEi1+Ej1,Ei2+Ej2κn1,n2(−Ei1 − Ej1)

(
γ†j2γ

†
i2ρsγi1γj1 −

1
2{γi1γj1γ

†
j2γ
†
i2, ρs}

)
+ 4

∑
i1,i2,j1,j2

u∗j1,n1v
∗
i1,n1uj2vi2δEi1+Ej1,Ei2+Ej2κn1,n2(Ei1 + Ej1)
(
γi2γj2ρsγ

†
j1γ
†
k1 −

1
2{γ

†
j1γ
†
i1γi2γj2, ρs}

)
+ 4

∑
i1,i2,j1,j2

u∗j1,n1v
∗
i1,n1Ai2,j2,n2δEi1+Ej1,Ej2−Ei2κn1,n2(Ei1 + Ej1)
(
γ†i2γj2ρsγ

†
j1γ
†
i1 −

1
2{γ

†
j1γ
†
i1γ
†
i2γj2, ρs}

) . (D.7)
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