Spin-splitting induced in a superconductor by an antiferromagnetic insulator

Inspired by recent feats in exchange coupling antiferromagnets to an adjacent material, we demonstrate the possibility of employing them for inducing spin splitting in a superconductor, thereby avoiding the detrimental, parasitic effects of ferromagnets employed to this end. We derive the Gor’kov equation for the matrix Green’s function in the superconducting layer, considering a microscopic model for its disordered interface with a two-sublattice magnetic insulator. We find that an antiferromagnetic insulator with effectively uncompensated interface induces a large, disorder-resistant spin splitting in the adjacent superconductor. In addition, we find contributions to the self-energy stemming from the interfacial disorder. Within our model, these mimic impurity and spin-flip scattering, while another breaks the symmetries in particle-hole and spin spaces. The latter contribution, however, drops out in the quasiclassical approximation and thus, does not significantly affect the superconducting state.

Akashdeep Kamra, Ali Rezaei, and Wolfgang Belzig

Phys. Rev. Lett. 121, 247702 (2018)