Quantum Field Theory in Condensed Matter Physics
Summer Semester 2010/11

Problem Set 10: BCS Theory
(Tutorial 04.07.2011, Peter Machon)

Problem 1 – Equation of motion for the BCS Green’s function

The BCS Hamiltonian and the particle number operator are given by
\[\hat{H} = \int \left[\sum_\alpha -\frac{\hat{\psi}_\alpha^\dagger \hat{\psi}_\alpha}{2m} \nabla^2 + \frac{g}{2} \sum_{\alpha,\beta} \hat{\psi}_\alpha^\dagger \hat{\psi}_\beta \hat{\psi}_\alpha \hat{\psi}_\beta \right] d^3r \quad \hat{N} = \sum_\alpha \int \hat{\psi}_\alpha^\dagger \hat{\psi}_\alpha d^3r \]
where \(g\) denotes the interaction strength.

(a) Eq. 1 defines Heisenberg operators given by
\[\tilde{\psi}_\alpha(\vec{r}, \tau) = e^{(\hat{H} - \mu \hat{N})\tau} \psi_\alpha(\vec{r}) e^{-(\hat{H} - \mu \hat{N})\tau} \quad \tilde{\psi}_\alpha(\vec{r}, \tau) = e^{(\hat{H} - \mu \hat{N})\tau} \psi_\alpha^\dagger(\vec{r}) e^{-(\hat{H} - \mu \hat{N})\tau} \]

Since \(\hat{H}\) and \(\hat{N}\) commute, show that the e.o.m. of the Green’s function \(G_{\alpha\beta}(x_1, x_2) = -\left\langle T\tilde{\psi}_\alpha(x_1)\tilde{\psi}_\beta(x_2) \right\rangle\) is given by
\[\left(\frac{\partial G_{\alpha\beta}(x_1, x_2)}{\partial \tau_1}\right) = -\delta_{\alpha\beta}\delta(x_1 - x_2) + \left(\frac{\nabla^2_1}{2m} + \mu\right) G_{\alpha\beta}(x_1, x_2) + g \left\langle T\tilde{\psi}_\gamma(x_1)\tilde{\psi}_\alpha(x_1)\tilde{\psi}_\alpha(x_1)\tilde{\psi}_\beta(x_2) \right\rangle \]

Hint: Calculate first the time derivative of \(\tilde{\psi}_\alpha(x) \quad (x = (\vec{r}, \tau))\) like \(\partial_\tau \tilde{\psi}_\alpha = \left[\hat{H} - \mu \hat{N}, \tilde{\psi}_\alpha \right]\).

(b) Now we will use Wick’s theorem to simplify the interaction part of the e.o.m. The basic assumption of the BCS theory is that the terms
\[F_{\alpha\beta}(x_1, x_2) = -\left\langle T\tilde{\psi}_\alpha(x_1)\tilde{\psi}_\beta(x_2) \right\rangle \quad F_{\alpha\beta}^\dagger(x_1, x_2) = -\left\langle T\tilde{\psi}_\alpha^\dagger(x_1)\tilde{\psi}_\beta^\dagger(x_2) \right\rangle \]
(called anomalous Gorkov or Green’s functions) do not vanish for a macroscopic volume \((V \rightarrow \infty)\) since the electrons form Cooper pairs which condense into a ground state. Additionally are all the other terms of the interaction part ignored in BCS theory since they lead to a renormalisation of the chemical potential \(\mu\). Define the gap matrix like \(\Delta_{\alpha\beta}(x) = |g|F_{\alpha\beta}(x, x)\) and show that the e.o.m. becomes \((g < 0)\):
\[\left(\frac{\partial}{\partial \tau_1} - \frac{\nabla^2_1}{2m} - \mu\right) G_{\alpha\beta}(x_1, x_2) - \Delta_{\alpha\gamma}(x_1)F_{\gamma\beta}^\dagger(x_1, x_2) = -\delta_{\alpha\beta}\delta(x_1 - x_2) \]
Problem 2 – Gorkov equation for a homogeneous system

Proceeding like in Problem 1 to find an e.o.m for F^\dagger, repeating everything for the time-reversed Green’s function $\tilde G_{\alpha\beta}(x_1, x_2) = \left\langle T \psi^\dagger_\alpha(x_1) \tilde \psi_\beta(x_2) \right\rangle = \delta_{\alpha\beta} \tilde G(x_1, x_2) = \delta_{\alpha\beta} G(x_2, x_1)$ and introducing the Nambu space like in the lecture one finally ends up with the matrix Green’s function for BCS superconductors:

$$\tilde G(x_1, x_2) = \begin{pmatrix} G(x_1, x_2) & F(x_1, x_2) \\ -F^\dagger(x_1, x_2) & \tilde G(x_1, x_2) \end{pmatrix}$$ (4)

With the operator $\tilde G^{-1} = -\frac{\partial}{\partial \tau} - \tilde H$ the Gorkov eqn. can be written as $\tilde G^{-1}(x_1) \tilde G(x_1, x_2) = 1 \delta(x_1 - x_2)$ were we defined

$$\tilde H = \begin{pmatrix} -\frac{\nabla^2}{2m} - \mu & -\Delta \\ -\Delta^* & \frac{\nabla^2}{2m} + \mu \end{pmatrix}$$ (5)

Introduce the Matsubara frequency representation and assume the system to be homogeneous to go over to k space and show that the matrix Green’s function in Nambu space is

$$\tilde G = \frac{-i\omega_n - \varepsilon_k \tilde \tau_3 + \Delta}{\omega_n^2 + \varepsilon_k^2 + \Delta^2}$$ (6)

were $\Delta = \begin{pmatrix} 0 & \Delta \\ \Delta^* & 0 \end{pmatrix}$ and $\varepsilon_k = k^2/2m - \mu$.

Problem 3 – Anderson theorem

One important problem is impurity scattering in the superconductor (so called dirty superconductors). The Anderson theorem tells that this impurity scattering doesn’t effect the superconducting gap Δ.

(a) To derive the Anderson effect first evaluate the integral in the self energy by inserting the Green’s function of problem 2 as the unperturbed Green’s function $\tilde G_0$ and show that

$$\tilde \Sigma = \frac{1}{2\pi \tau_{imp}} \int_{-\infty}^{\infty} d\varepsilon_k \tilde \tau_3 \tilde G_0 \tilde \tau_3 = \frac{1}{2\tau_{imp}} \left(\frac{-i\omega_n}{\sqrt{\omega_n^2 + \Delta^2}} - \frac{\Delta}{\sqrt{\omega_n^2 + \Delta^2}} \right)$$ (7)

This self energy takes into account all impurity diagrams of the type shown in the picture.

(b) Insert the impurity self energy in the Dyson equation to show that

$$\tilde G^{-1} = i\omega_n - \varepsilon_k \tilde \tau_3 + \Delta$$ (8)

were $\tilde a = a(1 + 1/2\tau_{imp} \Omega_n)$ and $\Omega_n = \sqrt{\omega_n^2 + \Delta^2}$

(c) Insert the new F from (b) in the definition of $\tilde \Delta$ to show that the resulting gap matrix is equal to the unperturbed one that was introduced in the lecture.