Problem 1 – Perturbation Expansion

For the system of oscillators given in Problem 1 of Problem Set 3:

(a) Show that it is possible to represent the terms in the perturbation expansion of the one particle Green’s function in powers of \(g \) by Feynman’s diagrams and state their structure.

(b) Prove that only one diagram contributes to the self-energy \(\Sigma(\omega_n) \) of the special oscillator.

(c) Derive by using Dyson’s equation the one particle Green’s function \(G(\omega_n) \).

Problem 2 – Interaction of fermions with a magnetic impurity

Fermions interacting with a single magnetic impurity are described by the Hamiltonian

\[
H = \int d^3 \vec{r} \psi^\dagger(\vec{r}) \left(-\frac{1}{2} \nabla^2 - \mu \right) \psi(\vec{r}) + \frac{1}{2} J \psi^\dagger(0) \vec{S} \sigma \psi(0)
\]

Here \(\vec{S} \) is the impurity spin, \(\sigma \) are the Pauli matrices and the definition of the Green’s function includes an average over the states of \(\vec{S} \).

(a) Write down the perturbation series for the one particle Green’s function of the given fermions up to the second order.

(b) Calculate the self-energy up to the second order.

Hint: An average of an observable \(A \) over the states of \(\vec{S} \) is given by

\[
\langle A \rangle = \frac{1}{2S+1} \sum_{m=-S}^{S} \langle S_m | A | S_m \rangle
\]
Problem 3

The one particle Green’s function for a weakly disordered system of fermions has the form

\[G^R(k, E) = \frac{1}{E - \varepsilon_k + i/\tau} \]

Similar to Problem 1 of Problem set 1 find the real-space representation \(G^R(\vec{r}, E) \) in the limit \(\frac{1}{\tau} \ll E_F \), where \(E_F \) is the Fermi energy.

Hint: Consider that \(E \to E_F \)